Suppr超能文献

密歇根州不同泌尿外科实践中用于共同决策的前列腺癌风险计算器评估

Evaluation of Prostate Cancer Risk Calculators for Shared Decision Making Across Diverse Urology Practices in Michigan.

作者信息

Auffenberg Gregory B, Merdan Selin, Miller David C, Singh Karandeep, Stockton Benjamin R, Ghani Khurshid R, Denton Brian T

机构信息

Department of Urology, University of Michigan, Ann Arbor, MI.

Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI.

出版信息

Urology. 2017 Jun;104:137-142. doi: 10.1016/j.urology.2017.01.039. Epub 2017 Feb 22.

Abstract

OBJECTIVE

To compare the predictive performance of a logistic regression model developed with contemporary data from a diverse group of urology practices to that of the Prostate Cancer Prevention Trial (PCPT) Risk Calculator version 2.0.

MATERIALS AND METHODS

With data from all first-time prostate biopsies performed between January 2012 and March 2015 across the Michigan Urological Surgery Improvement Collaborative (MUSIC), we developed a multinomial logistic regression model to predict the likelihood of finding high-grade cancer (Gleason score ≥7), low-grade cancer (Gleason score ≤6), or no cancer on prostate biopsy. The performance of the MUSIC model was evaluated in out-of-sample data using 10-fold cross-validation. Discrimination and calibration statistics were used to compare the performance of the MUSIC model to that of the PCPT risk calculator in the MUSIC cohort.

RESULTS

Of the 11,809 biopsies included, 4289 (36.3%) revealed high-grade cancer; 2027 (17.2%) revealed low-grade cancer; and the remaining 5493 (46.5%) were negative. In the MUSIC model, prostate-specific antigen level, rectal examination findings, age, race, and family history of prostate cancer were significant predictors of finding high-grade cancer on biopsy. The 2 models, based on similar predictors, had comparable discrimination (multiclass area under the curve = 0.63 for the MUSIC model and 0.62 for the PCPT calculator). Calibration analyses demonstrated that the MUSIC model more accurately predicted observed outcomes, whereas the PCPT risk calculator substantively overestimated the likelihood of finding no cancer while underestimating the risk of high-grade cancer in this population.

CONCLUSION

The PCPT risk calculator may not be a good predictor of individual biopsy outcomes for patients seen in contemporary urology practices.

摘要

目的

比较使用来自不同泌尿外科实践的当代数据开发的逻辑回归模型与前列腺癌预防试验(PCPT)风险计算器2.0版的预测性能。

材料与方法

利用密歇根泌尿外科手术改进协作组(MUSIC)在2012年1月至2015年3月期间进行的所有首次前列腺活检数据,我们开发了一个多项逻辑回归模型,以预测在前列腺活检中发现高级别癌症(Gleason评分≥7)、低级别癌症(Gleason评分≤6)或无癌症的可能性。使用10倍交叉验证在样本外数据中评估MUSIC模型的性能。使用鉴别和校准统计数据来比较MUSIC模型与MUSIC队列中PCPT风险计算器的性能。

结果

在纳入的11809例活检中,4289例(36.3%)显示高级别癌症;2027例(17.2%)显示低级别癌症;其余5493例(46.5%)为阴性。在MUSIC模型中,前列腺特异性抗原水平、直肠检查结果、年龄、种族和前列腺癌家族史是活检中发现高级别癌症的重要预测因素。基于相似预测因素的这两个模型具有可比的鉴别能力(MUSIC模型的多类曲线下面积为0.63,PCPT计算器为0.62)。校准分析表明,MUSIC模型更准确地预测了观察到的结果,而PCPT风险计算器在该人群中实质性地高估了无癌症的可能性,同时低估了高级别癌症的风险。

结论

对于当代泌尿外科实践中的患者,PCPT风险计算器可能不是个体活检结果的良好预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验