Suppr超能文献

扁枝衣霉素和扁枝衣菌素的体内不稳定性:脲基和氨基甲酸酯基扁枝衣霉素的合成及生物学评价

In vivo instability of platensimycin and platencin: Synthesis and biological evaluation of urea- and carbamate-platensimycin.

作者信息

Dong Liao-Bin, Rudolf Jeffrey D, Lin Li, Ruiz Claudia, Cameron Michael D, Shen Ben

机构信息

Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.

Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.

出版信息

Bioorg Med Chem. 2017 Mar 15;25(6):1990-1996. doi: 10.1016/j.bmc.2017.02.028. Epub 2017 Feb 16.

Abstract

Platensimycin (PTM) and platencin (PTN), two natural products and promising drug leads that target bacterial and mammalian fatty acid synthases, are known to have unfavorable pharmacokinetic properties. It is not clear, however, what the metabolic fates of PTM and PTN are and no efforts have been reported to address this key roadblock in the development of these compounds as viable drug options. Here we describe the pharmacokinetics of PTM and PTN, and reveal rapid renal clearance as the primary metabolic liability with three additional sites of chemical liability: (i) amide hydrolysis, (ii) glucuronidation, and (iii) oxidation. We determined that hydrolysis is a viable clearance mechanism in vivo and synthesized two PTM analogues to address in vivo hydrolysis. Urea- and carbamate-PTM analogues showed no detectable hydrolysis in vivo, at the expense of antibacterial activity, with no further improvement in systemic exposure. The antibacterial sulfur-containing analogues PTM D1 and PTM ML14 showed significant decreases in renal clearance. These studies set the stage for continued generation of PTM and PTN analogues in an effort to improve their pharmacokinetics while retaining or improving their biological activities.

摘要

扁枝衣霉素(PTM)和扁枝菌素(PTN)是两种天然产物,也是有望成为靶向细菌和哺乳动物脂肪酸合酶的药物先导物,已知它们具有不良的药代动力学特性。然而,目前尚不清楚PTM和PTN的代谢命运如何,也没有报道过为解决这些化合物作为可行药物选择开发过程中的这一关键障碍所做的努力。在此,我们描述了PTM和PTN的药代动力学,并揭示了快速肾脏清除是主要的代谢负担,同时还存在另外三个化学负担位点:(i)酰胺水解,(ii)葡萄糖醛酸化,以及(iii)氧化。我们确定水解是体内一种可行的清除机制,并合成了两种PTM类似物以解决体内水解问题。尿素和氨基甲酸酯PTM类似物在体内未检测到水解,但以抗菌活性为代价,全身暴露也没有进一步改善。含硫抗菌类似物PTM D1和PTM ML14的肾脏清除率显著降低。这些研究为持续生成PTM和PTN类似物奠定了基础,旨在改善它们的药代动力学,同时保留或提高它们的生物活性。

相似文献

1
In vivo instability of platensimycin and platencin: Synthesis and biological evaluation of urea- and carbamate-platensimycin.
Bioorg Med Chem. 2017 Mar 15;25(6):1990-1996. doi: 10.1016/j.bmc.2017.02.028. Epub 2017 Feb 16.
2
Antibacterial sulfur-containing platensimycin and platencin congeners from Streptomyces platensis SB12029.
Bioorg Med Chem. 2016 Dec 15;24(24):6348-6353. doi: 10.1016/j.bmc.2016.04.026. Epub 2016 Apr 13.
3
Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13498-503. doi: 10.1073/pnas.1106919108. Epub 2011 Aug 8.
4
A Mutasynthetic Library of Platensimycin and Platencin Analogues.
Org Lett. 2016 Sep 16;18(18):4606-9. doi: 10.1021/acs.orglett.6b02248. Epub 2016 Sep 6.
5
Platensimycin and its relatives: a recent story in the struggle to develop new naturally derived antibiotics.
Nat Prod Rep. 2011 Sep;28(9):1534-79. doi: 10.1039/c1np00010a. Epub 2011 Aug 2.
6
Discovery and syntheses of "superbug challengers"-platensimycin and platencin.
Chem Asian J. 2010 Apr 1;5(4):668-703. doi: 10.1002/asia.200900423.
10
Development of a semi-defined medium supporting production of platensimycin and platencin by Streptomyces platensis.
J Antibiot (Tokyo). 2013 Feb;66(2):51-4. doi: 10.1038/ja.2012.97. Epub 2012 Nov 28.

引用本文的文献

1
A Review of Antibacterial Candidates with New Modes of Action.
ACS Infect Dis. 2024 Oct 11;10(10):3440-3474. doi: 10.1021/acsinfecdis.4c00218. Epub 2024 Jul 17.
5
Semisynthesis and Biological Evaluation of Platencin Thioether Derivatives: Dual FabF and FabH Inhibitors against MRSA.
ACS Med Chem Lett. 2021 Feb 15;12(3):433-442. doi: 10.1021/acsmedchemlett.0c00653. eCollection 2021 Mar 11.
6
Bacterial terpenome.
Nat Prod Rep. 2021 May 26;38(5):905-980. doi: 10.1039/d0np00066c.
7
A Preclinical Candidate Targeting Mycobacterium tuberculosis KasA.
Cell Chem Biol. 2020 May 21;27(5):560-570.e10. doi: 10.1016/j.chembiol.2020.02.007. Epub 2020 Mar 19.
8
Late-Stage Functionalization of Platensimycin Leading to Multiple Analogues with Improved Antibacterial Activity in Vitro and in Vivo.
J Med Chem. 2019 Jul 25;62(14):6682-6693. doi: 10.1021/acs.jmedchem.9b00616. Epub 2019 Jul 2.
10
Semisynthesis of Platensimycin Derivatives with Antibiotic Activities in Mice via Suzuki-Miyaura Cross-Coupling Reactions.
J Med Chem. 2018 Dec 27;61(24):11341-11348. doi: 10.1021/acs.jmedchem.8b01580. Epub 2018 Dec 5.

本文引用的文献

1
A Facile Semi-Synthetic Approach towards Halogen-Substituted Aminobenzoic Acid Analogues of Platensimycin.
Tetrahedron. 2017 Feb 9;73(6):771-775. doi: 10.1016/j.tet.2016.12.059. Epub 2016 Dec 28.
2
Biosynthetic Origin of the Ether Ring in Platensimycin.
J Am Chem Soc. 2016 Dec 28;138(51):16711-16721. doi: 10.1021/jacs.6b09818. Epub 2016 Dec 14.
3
The Fatty Acid Synthase Inhibitor Platensimycin Improves Insulin Resistance without Inducing Liver Steatosis in Mice and Monkeys.
PLoS One. 2016 Oct 3;11(10):e0164133. doi: 10.1371/journal.pone.0164133. eCollection 2016.
4
A Mutasynthetic Library of Platensimycin and Platencin Analogues.
Org Lett. 2016 Sep 16;18(18):4606-9. doi: 10.1021/acs.orglett.6b02248. Epub 2016 Sep 6.
5
Antibacterial sulfur-containing platensimycin and platencin congeners from Streptomyces platensis SB12029.
Bioorg Med Chem. 2016 Dec 15;24(24):6348-6353. doi: 10.1016/j.bmc.2016.04.026. Epub 2016 Apr 13.
6
Titer improvement and pilot-scale production of platensimycin from Streptomyces platensis SB12026.
J Ind Microbiol Biotechnol. 2016 Jul;43(7):1027-35. doi: 10.1007/s10295-016-1769-z. Epub 2016 Apr 28.
7
Assembly and clustering of natural antibiotics guides target identification.
Nat Chem Biol. 2016 Apr;12(4):233-9. doi: 10.1038/nchembio.2018. Epub 2016 Feb 1.
9
Organic carbamates in drug design and medicinal chemistry.
J Med Chem. 2015 Apr 9;58(7):2895-940. doi: 10.1021/jm501371s. Epub 2015 Jan 7.
10
Strain prioritization for natural product discovery by a high-throughput real-time PCR method.
J Nat Prod. 2014 Oct 24;77(10):2296-303. doi: 10.1021/np5006168. Epub 2014 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验