Suppr超能文献

一种用于视频语义识别的自适应半监督特征分析。

An Adaptive Semisupervised Feature Analysis for Video Semantic Recognition.

出版信息

IEEE Trans Cybern. 2018 Feb;48(2):648-660. doi: 10.1109/TCYB.2017.2647904. Epub 2017 Feb 20.

Abstract

Video semantic recognition usually suffers from the curse of dimensionality and the absence of enough high-quality labeled instances, thus semisupervised feature selection gains increasing attentions for its efficiency and comprehensibility. Most of the previous methods assume that videos with close distance (neighbors) have similar labels and characterize the intrinsic local structure through a predetermined graph of both labeled and unlabeled data. However, besides the parameter tuning problem underlying the construction of the graph, the affinity measurement in the original feature space usually suffers from the curse of dimensionality. Additionally, the predetermined graph separates itself from the procedure of feature selection, which might lead to downgraded performance for video semantic recognition. In this paper, we exploit a novel semisupervised feature selection method from a new perspective. The primary assumption underlying our model is that the instances with similar labels should have a larger probability of being neighbors. Instead of using a predetermined similarity graph, we incorporate the exploration of the local structure into the procedure of joint feature selection so as to learn the optimal graph simultaneously. Moreover, an adaptive loss function is exploited to measure the label fitness, which significantly enhances model's robustness to videos with a small or substantial loss. We propose an efficient alternating optimization algorithm to solve the proposed challenging problem, together with analyses on its convergence and computational complexity in theory. Finally, extensive experimental results on benchmark datasets illustrate the effectiveness and superiority of the proposed approach on video semantic recognition related tasks.

摘要

视频语义识别通常受到维度诅咒和缺乏足够高质量标记实例的困扰,因此半监督特征选择因其效率和可理解性而受到越来越多的关注。大多数先前的方法假设具有相近距离(邻居)的视频具有相似的标签,并通过已标记和未标记数据的预定图来描述内在的局部结构。然而,除了构建图所涉及的参数调整问题外,原始特征空间中的相似度测量通常受到维度诅咒的困扰。此外,预定的图与特征选择过程分离,这可能会导致视频语义识别的性能下降。在本文中,我们从一个新的角度探索了一种新颖的半监督特征选择方法。我们的模型的主要假设是,具有相似标签的实例应该有更大的概率成为邻居。我们不是使用预定的相似性图,而是将局部结构的探索纳入联合特征选择过程中,以便同时学习最优图。此外,我们利用自适应损失函数来衡量标签拟合度,这极大地增强了模型对具有小或大量损失的视频的鲁棒性。我们提出了一种有效的交替优化算法来解决所提出的具有挑战性的问题,并在理论上对其收敛性和计算复杂度进行了分析。最后,在基准数据集上的广泛实验结果表明了所提出的方法在视频语义识别相关任务上的有效性和优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验