Suppr超能文献

并行步骤:利用高性能计算机进行大规模随机空间反应扩散模拟

Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers.

作者信息

Chen Weiliang, De Schutter Erik

机构信息

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan.

出版信息

Front Neuroinform. 2017 Feb 10;11:13. doi: 10.3389/fninf.2017.00013. eCollection 2017.

Abstract

Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation.

摘要

随机空间反应扩散模拟已在系统生物学和计算神经科学中广泛应用。然而,模型和形态的规模与复杂性不断增加,已超出任何串行实现的能力范围。这促使了并行解决方案的发展,这些方案受益于现代超级计算机性能的提升。在本文中,我们描述了一种基于MPI的并行算子分裂实现,用于具有不规则四面体网格的随机空间反应扩散模拟。我们首先通过一个简单模型的模拟来检验和分析我们实现的性能。然后,我们通过在浦肯野神经元子分支和完整树突形态中模拟已发表的钙爆发模型的反应扩散成分,展示其在实际研究中的应用。模拟结果表明,对于具有合理分子密度和网格质量的平衡负载模拟,我们的实现能够实现超线性加速。在最佳情况下,使用2000个进程的并行模拟比其串行SSA对应模拟快3600倍以上,相对于使用100个进程的并行模拟实现了20倍以上的加速。在具有动态钙内流和数据记录的更现实场景中,使用1000个进程且无负载平衡的并行模拟仍比传统串行SSA模拟快500倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c971/5301017/71e106692944/fninf-11-00013-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验