Li Chuang, Huang Jian-Ping, Li Zhen-Chun, Wang Rong-Rong
School of Geosciences, China University of Petroleum, Qingdao, 266580 Shandong China.
Hisense (Shandong) Refrigerator Co. Ltd, Hisense, Qingdao, 266580 Shandong China.
Pet Sci. 2017;14(1):61-74. doi: 10.1007/s12182-016-0134-1. Epub 2016 Dec 31.
Simultaneous-source acquisition has been recognized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a flat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneous-source data, incomplete data and noisy data.
同步震源采集已被公认为是一种经济高效的采集方法,但由于相邻震源的干扰,同步震源数据的直接成像会产生偏移假象。为克服这一问题,我们提出了一种使用奇异谱分析技术的正则化最小二乘逆时偏移方法(RLSRTM),该技术对反演模型施加稀疏约束。此外,还提出了奇异值的差谱理论,以便RLSRTM能够自适应地实现以消除偏移假象。通过在水平层模型和Marmousi模型上的数值试验,我们验证了RLSRTM在处理同步震源数据、不完整数据和噪声数据时,与LSRTM相比具有卓越的成像质量、效率和收敛性。