Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
Nanoscale. 2017 Mar 9;9(10):3476-3484. doi: 10.1039/c6nr09242j.
Artificial engineering of an interfacial spin structure of complex oxides with strongly coupled spin, orbital, charge and lattice degrees of freedom is crucially important for the exploration of novel effects associated with magnetic tunneling, exchange biasing, and spin injecting/manipulating, which are the central issues of spintronics. Here we demonstrate the presence of a distinct interlayer coupling between LaMnO (LMO) and LaCoO (LCO) and the resulting dramatic effect on the spin structure. We found that the LCO layer in (LMO/LCO) superlattices exhibits not only an antiferromagnetic coupling with a neighboring LMO layer but also a long-range magnetic order with substantially reduced magnetization. As suggested by density functional theory calculations, interlayer coupling can induce a spatial oscillation of magnetic moment within the LCO layer, resulting in low magnetization.
人工工程化具有强耦合自旋、轨道、电荷和晶格自由度的复杂氧化物的界面自旋结构,对于探索与磁隧道效应、交换偏置和自旋注入/操纵相关的新效应至关重要,这些效应是自旋电子学的核心问题。在这里,我们证明了 LaMnO (LMO) 和 LaCoO (LCO) 之间存在明显的层间耦合,以及由此对自旋结构产生的显著影响。我们发现,(LMO/LCO) 超晶格中的 LCO 层不仅与相邻的 LMO 层表现出反铁磁耦合,而且还表现出具有大幅降低的磁化强度的长程磁有序。正如密度泛函理论计算所表明的那样,层间耦合可以在 LCO 层内诱导磁矩的空间振荡,从而导致低磁化强度。