Suppr超能文献

药物流行病学中工具变量使用教程。

A tutorial on the use of instrumental variables in pharmacoepidemiology.

作者信息

Ertefaie Ashkan, Small Dylan S, Flory James H, Hennessy Sean

机构信息

Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA.

Department of statistics, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2017 Apr;26(4):357-367. doi: 10.1002/pds.4158. Epub 2017 Feb 27.

Abstract

PURPOSE

Instrumental variable (IV) methods are used increasingly in pharmacoepidemiology to address unmeasured confounding. In this tutorial, we review the steps used in IV analyses and the underlying assumptions. We also present methods to assess the validity of those assumptions and describe sensitivity analysis to examine the effects of possible violations of those assumptions.

METHODS

Observational studies based on regression or propensity score analyses rely on the untestable assumption that there are no unmeasured confounders. IV analysis is a tool that removes the bias caused by unmeasured confounding provided that key assumptions (some of which are also untestable) are met.

RESULTS

When instruments are valid, IV methods provided unbiased treatment effect estimation in the presence of unmeasured confounders. However, the standard error of the IV estimate is higher than the standard error of non-IV estimates, e.g., regression and propensity score methods. Sensitivity analyses provided insight about the robustness of the IV results to the plausible degrees of violation of assumptions.

CONCLUSIONS

IV analysis should be used cautiously because the validity of IV estimates relies on assumptions that are, in general, untestable and difficult to be certain about. Thus, assessing the sensitivity of the estimate to violations of these assumptions is important and can better inform the causal inferences that can be drawn from the study. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

目的

在药物流行病学中,工具变量(IV)方法越来越多地用于解决未测量的混杂因素问题。在本教程中,我们回顾了IV分析中使用的步骤及其潜在假设。我们还介绍了评估这些假设有效性的方法,并描述了敏感性分析,以检验这些假设可能被违反所产生的影响。

方法

基于回归或倾向评分分析的观察性研究依赖于一个无法检验的假设,即不存在未测量的混杂因素。IV分析是一种工具,只要满足关键假设(其中一些假设也无法检验),就能消除未测量的混杂因素所导致的偏差。

结果

当工具变量有效时,IV方法在存在未测量的混杂因素的情况下能提供无偏的治疗效果估计。然而,IV估计的标准误高于非IV估计(如回归和倾向评分方法)的标准误。敏感性分析提供了关于IV结果对假设的合理违反程度的稳健性的见解。

结论

应谨慎使用IV分析,因为IV估计的有效性依赖于通常无法检验且难以确定的假设。因此,评估估计对这些假设被违反的敏感性很重要,并且可以更好地为从研究中得出的因果推断提供信息。版权所有© 2017约翰威立父子有限公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验