Seroussi Inbar, Grebenkov Denis S, Pasternak Ofer, Sochen Nir
Department of Applied Mathematics, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Laboratoire de Physique de la Matière Condensée, CNRS - Ecole Polytechnique, University Paris-Saclay, F-91128 Palaiseau, France.
J Magn Reson. 2017 Apr;277:95-103. doi: 10.1016/j.jmr.2017.01.018. Epub 2017 Jan 27.
In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal.
为了在复杂结构中将微观分子运动与宏观扩散磁共振信号联系起来,我们提出了一种磁场中分子运动的通用随机模型。该模型的福克 - 普朗克方程支配着描述扩散 - 磁化传播子的概率密度函数。从传播子出发,我们推导出了布洛赫 - 托里方程的广义形式以及与随机相位方法的关系。这种推导不需要诸如空间常数扩散系数或传播子的特设选择等假设。特别是,现在可以通过空间变化的扩散系数明确地纳入隐含将微观结构纳入扩散磁共振信号的边界条件。虽然我们的推广对于分段常数扩散系数简化为传统的布洛赫 - 托里方程,但它也预测了需要在方程中添加一项才能完全描述磁共振信号的情况。