Ozarslan Evren, Shemesh Noam, Basser Peter J
Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, 13 South Drive, Bethesda, Maryland 20892, USA.
J Chem Phys. 2009 Mar 14;130(10):104702. doi: 10.1063/1.3082078.
Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov's results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.
基于罗伯逊介绍的一种描述,格雷本科夫最近引入了一种强大的形式体系,用于解析表示简单孔隙几何形状(如平板、圆柱体和球体)的扩散衰减核磁共振信号。在这项工作中,我们通过允许磁场梯度波形方向的可能变化来扩展这种多重相关函数形式体系。例如,这种扩展对于在扩散加权核磁共振成像扫描中纳入成像梯度的影响以及通过双脉冲场梯度(PFG)实验在不同长度尺度上表征各向异性是必要的。在圆柱形和球形孔隙中,分别采用了二维和三维矢量算符,其形式通过圆柱体情况下的基本算符代数和球体情况下的维格纳 - 埃卡特定理从格雷本科夫的结果推导得出。通过与已知结果以及从充满水的微毛细管获得的实验双PFG数据进行比较,验证了该理论。