Saadaoui Saif, Ben Youssef Mohamed Aziz, Ben Karoui Moufida, Gharbi Rached, Smecca Emanuele, Strano Vincenzina, Mirabella Salvo, Alberti Alessandra, Puglisi Rosaria A
Laboratoire des Semi-conducteurs et Dispositifs Electroniques, LISIER, University of Tunis, Ecole Nationale Supérieure d'Ingénieurs de Tunis, 05 Av. Taha Hussein 1008 Montfleury, Tunis, Tunisia.
Laboratoire des Semi-conducteurs et Dispositifs Electroniques, LISIER, University of Tunis, Ecole Nationale Supérieure d'Ingénieurs de Tunis, 05 Av. Taha Hussein 1008 Montfleury, Tunis, Tunisia; Laboratoire de Photovoltaïque, centre de Recherche et des Technologies de l'énergie, Technopole de Borej-Cedria, BP 95, Hammam-Lif, Tunis 2050, Tunisia.
Beilstein J Nanotechnol. 2017 Jan 30;8:287-295. doi: 10.3762/bjnano.8.31. eCollection 2017.
In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed as a thin film at the photoanode side of the DSSC. The ZnO layers were annealed at different temperatures under various gas sources. Indeed, the forming gas (FG) (N/H 95:5) was found to enhance the conductivity by a factor of 10 compared to nitrogen (N) or oxygen (O) annealing gas. The NR width varied between 40 and 100 nm and the length from 500 to 1000 nm, depending on the growth time. The obtained NWs had a length of 850 nm. The properties of the developed ZnO NW and NR layers with different thicknesses and their effect on the photovoltaic parameters were studied. An internal coverage of the ZnO NWs was also applied by the deposition of a thin TiO layer by reactive sputtering to improve the cell performance. The application of this layer increased the overall short circuit current by seven times from 2.45 × 10 mA/cm to 1.70 × 10 mA /cm.
在这项工作中,研究了从指甲花和锦葵植物中提取的两种在665nm处具有最大吸光度的天然染料,并将其用作染料敏化太阳能电池(DSSC)制造中的敏化剂。提取物的傅里叶变换红外(FTIR)光谱显示存在锚定基团和着色成分。通过化学浴沉积(CBD)使用氧化锌(ZnO)层制备了两种不同的结构,以获得用作DSSC光阳极侧薄膜的ZnO纳米壁(NW)或纳米棒(NR)层。ZnO层在不同温度下于各种气体源下进行退火。实际上,发现形成气体(FG)(N/H 95:5)与氮气(N)或氧气(O)退火气体相比,电导率提高了10倍。NR宽度在40至100nm之间变化,长度在500至1000nm之间,具体取决于生长时间。获得的NW长度为850nm。研究了不同厚度的已开发ZnO NW和NR层的性能及其对光伏参数的影响。还通过反应溅射沉积薄TiO层来实现ZnO NW的内部覆盖,以提高电池性能。该层的应用使总短路电流从2.45×10 mA/cm增加到1.70×10 mA /cm,增加了七倍。