Kader Dana A, Mohammed Azhin H, Mohammed Sewara J, Aziz Dara Muhammed
Department of Chemistry, College of Education, University of Sulaimani Old Campus Sulaymaniyah 46001 Kurdistan Region Iraq
Pharmacy Department, Komar University of Science and Technology Sulaymaniyah 46002 Kurdistan Region Iraq.
RSC Adv. 2025 Jun 2;15(23):18245-18265. doi: 10.1039/d5ra02154e. eCollection 2025 May 29.
This research develops a green synthesis process for the ZnO@henna nanocomposite and examines its performance in degrading the 4-nitrophenol (4-NP) pollutant in water under visible light illumination. The method of synthesizing ZnO nanoparticles (ZnONPs) started with the use of kaffir lime extract, followed by conjugating henna extract, which contains the natural photosensitizer lawsone. The analysis of the synthesized ZnO@henna nanocomposite included FTIR, XRD, FESEM, EDS, TEM, UV-vis DRS, zeta potential, PL, and BET surface area to validate its formation and show property improvements. The band gap energy of ZnO decreased to 2.80 eV during UV-vis DRS analysis, thus extending the optical absorption into visible light wavelengths. Under blue LED light illumination, the ZnO@henna nanocomposite achieved 93% degradation of 4-NP within 120 minutes. The optimized photocatalytic degradation process occurred under a catalyst dosage of 25 mg combined with a pH value of 10 and an initial 4-NP concentration at 50 ppm. After four successive reaction cycles, the catalyst managed to maintain 85% efficiency in 4-NP mineralization. Laboratory investigations using scavenger experiments along with mechanistic studies proved that hydroxyl radicals (˙OH) and superoxide radicals (O˙) were the leading contributors to the degradation system. ZnO@henna shows promise as an economical and environmentally friendly photocatalyst for carrying out environmental remediation operations.
本研究开发了一种用于ZnO@指甲花纳米复合材料的绿色合成工艺,并考察了其在可见光照射下对水中4-硝基苯酚(4-NP)污染物的降解性能。合成ZnO纳米颗粒(ZnONPs)的方法首先是使用酸橙提取物,然后与含有天然光敏剂胡桃醌的指甲花提取物结合。对合成的ZnO@指甲花纳米复合材料的分析包括傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、能谱分析(EDS)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-vis DRS)、zeta电位、光致发光(PL)和比表面积分析(BET),以验证其形成并显示性能改进。在紫外-可见漫反射光谱分析中,ZnO的带隙能量降至2.80 eV,从而将光吸收扩展到可见光波长范围。在蓝色发光二极管(LED)光照下,ZnO@指甲花纳米复合材料在120分钟内实现了对4-NP的93%降解。优化的光催化降解过程发生在催化剂用量为25 mg、pH值为10且初始4-NP浓度为50 ppm的条件下。经过四个连续的反应循环后,该催化剂在4-NP矿化中仍能保持85%的效率。使用清除剂实验的实验室研究以及机理研究证明,羟基自由基(˙OH)和超氧自由基(O˙)是降解体系的主要贡献者。ZnO@指甲花作为一种经济且环保的光催化剂,在环境修复操作方面具有应用前景。