Suppr超能文献

利用临床病理数据,通过一种新型列线图可以预测Oncotype DX乳腺癌复发评分。

Oncotype DX breast cancer recurrence score can be predicted with a novel nomogram using clinicopathologic data.

作者信息

Orucevic Amila, Bell John L, McNabb Alison P, Heidel Robert E

机构信息

Department of Pathology, University of Tennessee Medical Center, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.

Department of Surgery, University of Tennessee Medical Center, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.

出版信息

Breast Cancer Res Treat. 2017 May;163(1):51-61. doi: 10.1007/s10549-017-4170-3. Epub 2017 Feb 27.

Abstract

PURPOSE

Oncotype DX (ODX) recurrence score (RS) breast cancer (BC) assay is costly, and performed in only ~1/3 of estrogen receptor (ER)-positive BC patients in the USA. We have now developed a user-friendly nomogram surrogate prediction model for ODX based on a large dataset from the National Cancer Data Base (NCDB) to assist in selecting patients for which further ODX testing may not be necessary and as a surrogate for patients for which ODX testing is not affordable or available.

METHODS

Six clinicopathologic variables of 27,719 ODX-tested ER+/HER2-/lymph node-negative patients with 6-50 mm tumor size captured by the NCDB from 2010 to 2012 were assessed with logistic regression to predict high-risk or low-risk ODXRS test results with TAILORx-trial and commercial cut-off values; 12,763 ODX-tested patients in 2013 were used for external validation. The predictive accuracy of the regression model was yielded using a Receiver Operator Characteristic analysis. Model fit was analyzed by plotting the predicted probabilities against the actual probabilities. A user-friendly calculator version of nomograms is available online at the University of Tennessee Medical Center website (Knoxville, TN).

RESULTS

Grade and progesterone receptor status were the highest predictors of both low-risk and high-risk ODXRS, followed by age, tumor size, histologic tumor type and lymph-vascular invasion (C-indexes-.0.85 vs. 0.88 for TAILORx-trial vs. commercial cut-off values, respectively).

CONCLUSION

This is the first study of this scale showing confidently that clinicopathologic variables can be used for prediction of low-risk or high-risk ODXRS using our nomogram models. These novel nomograms will be useful tools to help physicians and patients decide whether further ODX testing is necessary and are excellent surrogates for patients for which ODX testing is not affordable or available.

摘要

目的

Oncotype DX(ODX)复发评分(RS)乳腺癌(BC)检测成本高昂,在美国仅约三分之一的雌激素受体(ER)阳性BC患者中进行。我们现在基于国家癌症数据库(NCDB)的大型数据集开发了一种用户友好的列线图替代预测模型用于ODX,以帮助选择可能无需进一步ODX检测的患者,并作为ODX检测无法负担或无法进行的患者的替代方法。

方法

对NCDB在2010年至2012年期间收集的27719例接受ODX检测、ER+/HER2-/淋巴结阴性、肿瘤大小为6 - 50mm的患者的六个临床病理变量进行逻辑回归分析,以预测TAILORx试验和商业临界值下的高风险或低风险ODX RS检测结果;2013年的12763例接受ODX检测的患者用于外部验证。使用受试者工作特征分析得出回归模型的预测准确性。通过绘制预测概率与实际概率的关系图来分析模型拟合情况。田纳西大学医学中心网站(田纳西州诺克斯维尔)在线提供了用户友好的列线图计算器版本。

结果

分级和孕激素受体状态是低风险和高风险ODX RS的最强预测因素,其次是年龄、肿瘤大小、组织学肿瘤类型和淋巴管浸润(TAILORx试验与商业临界值的C指数分别为0.85和0.88)。

结论

这是该规模的第一项研究,有力地表明临床病理变量可用于使用我们的列线图模型预测低风险或高风险ODX RS。这些新型列线图将成为有用的工具,帮助医生和患者决定是否需要进一步进行ODX检测,并且是ODX检测无法负担或无法进行的患者的优秀替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a230/5387031/5903fe526ae7/10549_2017_4170_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验