Suppr超能文献

Ag₂MoO₄微棒作为锂离子电池负极材料的电化学性能及存储机制

Electrochemical Performance and Storage Mechanism of Ag Mo O Micro-rods as the Anode Material for Lithium-Ion Batteries.

作者信息

Zhang Meina, Gao Yu, Chen Nan, Ge Xin, Chen Hong, Wei Yingjin, Du Fei, Chen Gang, Wang Chunzhong

机构信息

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P.R. China.

State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, P.R. China.

出版信息

Chemistry. 2017 Apr 11;23(21):5148-5153. doi: 10.1002/chem.201700281. Epub 2017 Mar 27.

Abstract

Ag Mo O micro-rods are prepared by one-step hydrothermal method and their lithium electrochemical properties, as the anode for lithium-ion batteries, are comprehensively studied in terms of galvanostatic charge-discharge cycling, cyclic voltammetry, and rate performance measurements. The electrode delivers a high reversible capacity of 825 mAh g at a current density of 100 mA g and a superior rate capability with a discharge capacity of 263 mAh g under the high current density of 2 Ag . The structural transition and phase evolution of Ag Mo O were investigated by using ex situ XRD and TEM. The Ag Mo O electrode is likely to be decomposed into amorphous molybdenum, Li O, and metallic silver based on the conversion reaction. Silver nanoparticles are not involved in the subsequent electrochemical cycles to form a homogeneous conducting network. Such in situ decomposition behavior provides an insight into the mechanism of the electrochemical reaction for the anode materials and would contribute to the design of new electrode materials in future.

摘要

通过一步水热法制备了Ag₂MoO₄微棒,并作为锂离子电池的负极,从恒电流充放电循环、循环伏安法和倍率性能测试等方面对其锂电化学性能进行了全面研究。在100 mA g⁻¹的电流密度下,该电极具有825 mAh g⁻¹的高可逆容量,在2 A g⁻¹的高电流密度下具有优异的倍率性能,放电容量为263 mAh g⁻¹。利用非原位XRD和TEM研究了Ag₂MoO₄的结构转变和相演变。基于转化反应,Ag₂MoO₄电极可能分解为非晶态钼、Li₂O和金属银。银纳米颗粒不参与随后的电化学循环以形成均匀的导电网络。这种原位分解行为为阳极材料的电化学反应机理提供了深入了解,并将有助于未来新型电极材料的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验