Suppr超能文献

三维人脸识别过程中的注视行为不依赖深度线索。

Gaze behavior during 3-D face identification is depth cue invariant.

作者信息

Akhavein Hassan, Farivar Reza

机构信息

McGill Vision Research Unit, Department of Ophthalmology, McGill University, and The BRaIN Program of the RI-MUHC, Montréal,

McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montréal, Canadahttp://www.farivarlab.com/.

出版信息

J Vis. 2017 Feb 1;17(2):9. doi: 10.1167/17.2.9.

Abstract

Gaze behavior during scene and object recognition can highlight the relevant information for a task. For example, salience maps-highlighting regions that have heightened luminance, contrast, color, etc. in a scene-can be used to predict gaze targets. Certain tasks, such as face recognition, result in a typical pattern of fixations on high salience features. While local salience of a 2-D feature may contribute to gaze behavior and object recognition, we are perfectly capable of recognizing objects from 3-D depth cues devoid of meaningful 2-D features. Faces can be recognized from pure texture, binocular disparity, or structure-from-motion displays (Dehmoobadsharifabadi & Farivar, 2016; Farivar, Blanke, & Chaudhuri, 2009; Liu, Collin, Farivar, & Chaudhuri, 2005), and yet these displays are devoid of local salient 2-D features. We therefore sought to determine whether gaze behavior is driven by an underlying 3-D representation that is depth-cue invariant or depth-cue specific. By using a face identification task comprising morphs of 3-D facial surfaces, we were able to measure identification thresholds and thereby equate for task difficulty across different depth cues. We found that gaze behavior for faces defined by shading and texture cues was highly comparable, but we observed some deviations for faces defined by binocular disparity. Interestingly, we found no effect of task difficulty on gaze behavior. The results are discussed in the context of depth-cue invariant representations for facial surfaces, with gaze behavior being constrained by low-level limits of depth extraction from specific cues such as binocular disparity.

摘要

在场景和物体识别过程中的注视行为能够突出与任务相关的信息。例如,显著性图(突出场景中具有增强的亮度、对比度、颜色等的区域)可用于预测注视目标。某些任务,如人脸识别,会导致在高显著性特征上出现典型的注视模式。虽然二维特征的局部显著性可能有助于注视行为和物体识别,但我们完全有能力从缺乏有意义二维特征的三维深度线索中识别物体。可以从纯纹理、双眼视差或运动结构显示中识别面孔(德赫穆巴德沙里法巴迪和法里瓦尔,2016年;法里瓦尔、布兰克和乔杜里,2009年;刘、科林、法里瓦尔和乔杜里,2005年),然而这些显示缺乏局部显著的二维特征。因此,我们试图确定注视行为是否由一种潜在的三维表征驱动,这种表征是深度线索不变的还是深度线索特定的。通过使用一个包含三维面部表面变形的人脸识别任务,我们能够测量识别阈值,从而使不同深度线索下的任务难度相等。我们发现,由阴影和纹理线索定义的面孔的注视行为高度可比,但我们观察到由双眼视差定义的面孔存在一些偏差。有趣的是,我们发现任务难度对注视行为没有影响。将在面部表面深度线索不变表征的背景下讨论这些结果,其中注视行为受到从特定线索(如双眼视差)提取深度的低级限制的约束。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验