Suppr超能文献

急性口服或静脉注射磷酸盐适应需要甲状旁腺激素。

Acute Adaption to Oral or Intravenous Phosphate Requires Parathyroid Hormone.

作者信息

Thomas Linto, Bettoni Carla, Knöpfel Thomas, Hernando Nati, Biber Jürg, Wagner Carsten A

机构信息

Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland.

Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland

出版信息

J Am Soc Nephrol. 2017 Mar;28(3):903-914. doi: 10.1681/ASN.2016010082. Epub 2016 Oct 6.

Abstract

Phosphate (Pi) homeostasis is regulated by renal, intestinal, and endocrine mechanisms through which Pi intake stimulates parathyroid hormone (PTH) and fibroblast growth factor-23 secretion, increasing phosphaturia. Mechanisms underlying the early adaptive phase and the role of the intestine, however, remain ill defined. We investigated mineral, endocrine, and renal responses during the first 4 hours after intravenous and intragastric Pi loading in rats. Intravenous Pi loading (0.5 mmol) caused a transient rise in plasma Pi levels and creatinine clearance and an increase in phosphaturia within 10 minutes. Plasma calcium levels fell and PTH levels increased within 10 minutes and remained low or high, respectively. Fibroblast growth factor-23, 1,25-(OH)-vitamin D, and insulin concentrations did not respond, but plasma dopamine levels increased by 4 hours. In comparison, gastric Pi loading elicited similar but delayed phosphaturia and endocrine responses but did not affect plasma mineral levels. Either intravenous or gastric loading led to decreased expression and activity of renal Pi transporters after 4 hours. In parathyroidectomized rats, however, only intravenous Pi loading caused phosphaturia, which was blunted and transient compared with that in intact rats. Intravenous but not gastric Pi loading in parathyroidectomized rats also led to higher creatinine clearance and lower plasma calcium levels but did not reduce the expression or activity of Pi transporters. This evidence suggests that an intravenous or intestinal Pi bolus causes rapid phosphaturia through mechanisms requiring PTH and downregulation of renal Pi transporters but does not support a role of the intestine in stimulating renal clearance of Pi.

摘要

磷酸盐(Pi)稳态通过肾脏、肠道和内分泌机制进行调节,Pi摄入通过这些机制刺激甲状旁腺激素(PTH)和成纤维细胞生长因子-23的分泌,从而增加尿磷排泄。然而,早期适应阶段的潜在机制以及肠道的作用仍不明确。我们研究了大鼠静脉注射和胃内给予Pi负荷后最初4小时内的矿物质、内分泌和肾脏反应。静脉注射Pi负荷(0.5 mmol)导致血浆Pi水平和肌酐清除率短暂升高,并在10分钟内尿磷排泄增加。血浆钙水平在10分钟内下降,PTH水平在10分钟内升高,并分别保持在低水平或高水平。成纤维细胞生长因子-23、1,25-(OH)-维生素D和胰岛素浓度无反应,但血浆多巴胺水平在4小时时升高。相比之下,胃内给予Pi负荷引起类似但延迟的尿磷排泄和内分泌反应,但不影响血浆矿物质水平。4小时后,静脉注射或胃内给予Pi负荷均导致肾脏Pi转运体的表达和活性降低。然而,在甲状旁腺切除的大鼠中,只有静脉注射Pi负荷导致尿磷排泄,与完整大鼠相比,这种排泄减弱且短暂。甲状旁腺切除的大鼠静脉注射而非胃内给予Pi负荷也导致肌酐清除率升高和血浆钙水平降低,但并未降低Pi转运体的表达或活性。这一证据表明,静脉注射或肠道给予Pi推注通过需要PTH和下调肾脏Pi转运体的机制导致快速尿磷排泄,但不支持肠道在刺激肾脏清除Pi方面的作用。

相似文献

1
Acute Adaption to Oral or Intravenous Phosphate Requires Parathyroid Hormone.
J Am Soc Nephrol. 2017 Mar;28(3):903-914. doi: 10.1681/ASN.2016010082. Epub 2016 Oct 6.
2
The calcium-sensing receptor has only a parathyroid hormone-dependent role in the acute response of renal phosphate transporters to phosphate intake.
Am J Physiol Renal Physiol. 2024 May 1;326(5):F792-F801. doi: 10.1152/ajprenal.00009.2024. Epub 2024 Mar 28.
4
Vitamin D and type II sodium-dependent phosphate cotransporters.
Contrib Nephrol. 2013;180:86-97. doi: 10.1159/000346786. Epub 2013 May 6.
5
The human response to acute enteral and parenteral phosphate loads.
J Am Soc Nephrol. 2014 Dec;25(12):2730-9. doi: 10.1681/ASN.2013101076. Epub 2014 May 22.
6
Intestinal Response to Acute Intragastric and Intravenous Administration of Phosphate in Rats.
Cell Physiol Biochem. 2019;52(4):838-849. doi: 10.33594/000000058.
7
Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation.
Am J Physiol Renal Physiol. 2014 Apr 1;306(7):F744-50. doi: 10.1152/ajprenal.00474.2013. Epub 2014 Feb 5.
9
Postprandial adjustments in renal phosphate excretion do not involve a gut-derived phosphaturic factor.
Exp Physiol. 2017 Apr 1;102(4):462-474. doi: 10.1113/EP086062. Epub 2017 Mar 14.
10
Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11085-90. doi: 10.1073/pnas.0704446104. Epub 2007 Jun 12.

引用本文的文献

1
Updates on renal phosphate transport.
Curr Opin Nephrol Hypertens. 2025 Jul 1;34(4):269-275. doi: 10.1097/MNH.0000000000001090. Epub 2025 May 13.
2
The Pathologic Actions of Phosphate in CKD.
Kidney360. 2025 Apr 17;6(6):1040-1049. doi: 10.34067/KID.0000000820.
6
The Intricacies of Renal Phosphate Reabsorption-An Overview.
Int J Mol Sci. 2024 Apr 25;25(9):4684. doi: 10.3390/ijms25094684.
7
The Ip6k1 and Ip6k2 Kinases Are Critical for Normal Renal Tubular Function.
J Am Soc Nephrol. 2024 Apr 1;35(4):441-455. doi: 10.1681/ASN.0000000000000303. Epub 2024 Feb 6.
8
Phosphate in Cardiovascular Disease: From New Insights Into Molecular Mechanisms to Clinical Implications.
Arterioscler Thromb Vasc Biol. 2024 Mar;44(3):584-602. doi: 10.1161/ATVBAHA.123.319198. Epub 2024 Jan 11.
9
Intestinal and Renal Adaptations to Changes of Dietary Phosphate Concentrations in Rat.
Function (Oxf). 2023 Nov 13;5(1):zqad063. doi: 10.1093/function/zqad063. eCollection 2024.
10
Understanding renal phosphate handling: unfinished business.
Curr Opin Nephrol Hypertens. 2023 Jul 1;32(4):394-400. doi: 10.1097/MNH.0000000000000889. Epub 2023 Apr 12.

本文引用的文献

1
Evidence for a gastrointestinal-renal kaliuretic signaling axis in humans.
Kidney Int. 2015 Dec;88(6):1383-1391. doi: 10.1038/ki.2015.243. Epub 2015 Aug 26.
2
A unified model for bone-renal mineral and energy metabolism.
Curr Opin Pharmacol. 2015 Jun;22:64-71. doi: 10.1016/j.coph.2015.03.006. Epub 2015 Apr 13.
3
Intestinal Depletion of NaPi-IIb/Slc34a2 in Mice: Renal and Hormonal Adaptation.
J Bone Miner Res. 2015 Oct;30(10):1925-37. doi: 10.1002/jbmr.2523. Epub 2015 May 7.
4
Renal control of calcium, phosphate, and magnesium homeostasis.
Clin J Am Soc Nephrol. 2015 Jul 7;10(7):1257-72. doi: 10.2215/CJN.09750913. Epub 2014 Oct 6.
5
The human response to acute enteral and parenteral phosphate loads.
J Am Soc Nephrol. 2014 Dec;25(12):2730-9. doi: 10.1681/ASN.2013101076. Epub 2014 May 22.
6
The SLC34 family of sodium-dependent phosphate transporters.
Pflugers Arch. 2014 Jan;466(1):139-53. doi: 10.1007/s00424-013-1418-6. Epub 2013 Dec 19.
8
Extracellular phosphate as a signaling molecule.
Contrib Nephrol. 2013;180:14-24. doi: 10.1159/000346776. Epub 2013 May 3.
9
Phosphate transporters and their function.
Annu Rev Physiol. 2013;75:535-50. doi: 10.1146/annurev-physiol-030212-183748.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验