Lima Rita de Cássia L, Gramsbergen Simone M, Van Staden Johannes, Jäger Anna K, Kongstad Kenneth T, Staerk Dan
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark.
Research Center for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg , Private Bag X01, Scottsville 3209, South Africa.
J Nat Prod. 2017 Apr 28;80(4):1020-1027. doi: 10.1021/acs.jnatprod.6b01020. Epub 2017 Mar 1.
A hyphenated procedure involving high-performance liquid chromatography, photodiode array detection, high-resolution mass spectrometry, solid-phase extraction, and nuclear magnetic resonance spectroscopy, i.e., HPLC-PDA-HRMS-SPE-NMR, has proven an effective technique for the identification of compounds in complex matrices. Most HPLC-PDA-HRMS-SPE-NMR investigations reported so far have relied on analytical-scale reversed-phase C columns for separation. Herein is reported the use of an analytical-scale pentafluorophenyl column as an orthogonal separation method following fractionation of a crude ethyl acetate extract of leaves of Coleonema album on a preparative-scale C column. This setup allowed the HPLC-PDA-HRMS-SPE-NMR analysis of 23 coumarins, including six new compounds, 8-O-β-d-glucopyranosyloxy-6-(2,3-dihydroxy-3-methylbut-1-yl)-7-methoxycoumarin (4), (Z)-6-(4-β-d-glucopyranosyloxy-3-methylbut-2-en-1-yl)-7-hydroxycoumarin (6), 6-(4-β-d-glucopyranosyloxy-3-methylbut-1-yl)-7-hydroxycoumarin (8), (Z)-7-(4-β-d-glucopyranosyloxy-3-methylbut-2-en-1-yloxy)coumarin (13), (S)-8-(3-chloro-2-hydroxy-3-methylbut-1-yloxy)-7-methoxycoumarin (19), and 7-(3-chloro-2-hydroxy-3-methylbut-1-yloxy)coumarin (20). The use of the pentafluorophenyl column even allowed separation of several regioisomers that are usually difficult to separate using reversed-phase C columns. The phytochemical investigation described for C. album in this report demonstrates the potential and wide applicability of HPLC-PDA-HRMS-SPE-NMR for accelerated structural identification of natural products in complex mixtures.
一种联用技术,包括高效液相色谱、光电二极管阵列检测、高分辨率质谱、固相萃取和核磁共振光谱,即HPLC-PDA-HRMS-SPE-NMR,已被证明是一种用于鉴定复杂基质中化合物的有效技术。到目前为止,大多数报道的HPLC-PDA-HRMS-SPE-NMR研究都依赖于分析规模的反相C柱进行分离。本文报道了在制备规模的C柱上对香叶蒿叶的粗乙酸乙酯提取物进行分馏后,使用分析规模的五氟苯基柱作为正交分离方法。该设置允许对23种香豆素进行HPLC-PDA-HRMS-SPE-NMR分析,包括6种新化合物,8-O-β-D-吡喃葡萄糖氧基-6-(2,3-二羟基-3-甲基丁-1-基)-7-甲氧基香豆素(4)、(Z)-6-(4-β-D-吡喃葡萄糖氧基-3-甲基丁-2-烯-1-基)-7-羟基香豆素(6)、6-(4-β-D-吡喃葡萄糖氧基-3-甲基丁-1-基)-7-羟基香豆素(8)、(Z)-7-(4-β-D-吡喃葡萄糖氧基-3-甲基丁-2-烯-1-基氧基)香豆素(13)、(S)-8-(3-氯-2-羟基-3-甲基丁-1-基氧基)-7-甲氧基香豆素(19)和7-(3-氯-2-羟基-3-甲基丁-1-基氧基)香豆素(20)。使用五氟苯基柱甚至可以分离几种通常难以用反相C柱分离的区域异构体。本报告中描述的香叶蒿的植物化学研究证明了HPLC-PDA-HRMS-SPE-NMR在加速鉴定复杂混合物中天然产物结构方面的潜力和广泛适用性。