Suppr超能文献

高效的含噪及时滞生化反应随机模拟。

Efficient stochastic simulation of biochemical reactions with noise and delays.

机构信息

The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068, Italy.

Department of Mathematics, University of Trento, Trento, Italy.

出版信息

J Chem Phys. 2017 Feb 28;146(8):084107. doi: 10.1063/1.4976703.

Abstract

The stochastic simulation algorithm has been used to generate exact trajectories of biochemical reaction networks. For each simulation step, the simulation selects a reaction and its firing time according to a probability that is proportional to the reaction propensity. We investigate in this paper new efficient formulations of the stochastic simulation algorithm to improve its computational efficiency. We examine the selection of the next reaction firing and reduce its computational cost by reusing the computation in the previous step. For biochemical reactions with delays, we present a new method for computing the firing time of the next reaction. The principle for computing the firing time of our approach is based on recycling of random numbers. Our new approach for generating the firing time of the next reaction is not only computationally efficient but also easy to implement. We further analyze and reduce the number of propensity updates when a delayed reaction occurred. We demonstrate the applicability of our improvements by experimenting with concrete biological models.

摘要

随机模拟算法已被用于生成生化反应网络的精确轨迹。在每个模拟步骤中,模拟根据与反应倾向成比例的概率选择一个反应及其点火时间。本文研究了新的有效的随机模拟算法的公式,以提高其计算效率。我们研究了下一个反应点火的选择,并通过重复使用前一步骤的计算来降低其计算成本。对于具有延迟的生化反应,我们提出了一种计算下一个反应点火时间的新方法。我们方法的计算点火时间的原理基于随机数的循环使用。我们生成下一个反应点火时间的新方法不仅计算效率高,而且易于实现。当发生延迟反应时,我们进一步分析并减少倾向更新的数量。我们通过用具体的生物模型进行实验来证明我们的改进的适用性。

相似文献

1
Efficient stochastic simulation of biochemical reactions with noise and delays.
J Chem Phys. 2017 Feb 28;146(8):084107. doi: 10.1063/1.4976703.
2
3
Stochastic simulation of biochemical reactions with partial-propensity and rejection-based approaches.
Math Biosci. 2017 Oct;292:67-75. doi: 10.1016/j.mbs.2017.08.001. Epub 2017 Aug 4.
4
Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):657-667. doi: 10.1109/TCBB.2016.2530066. Epub 2016 Feb 15.
6
Slow update stochastic simulation algorithms for modeling complex biochemical networks.
Biosystems. 2017 Dec;162:135-146. doi: 10.1016/j.biosystems.2017.10.011. Epub 2017 Nov 1.
9
Accuracy Analysis of Hybrid Stochastic Simulation Algorithm on Linear Chain Reaction Systems.
Bull Math Biol. 2019 Aug;81(8):3024-3052. doi: 10.1007/s11538-018-0461-z. Epub 2018 Jul 10.
10
On the rejection-based algorithm for simulation and analysis of large-scale reaction networks.
J Chem Phys. 2015 Jun 28;142(24):244106. doi: 10.1063/1.4922923.

引用本文的文献

1
A Probabilistic Model of the Germinal Center Reaction.
Front Immunol. 2019 Apr 3;10:689. doi: 10.3389/fimmu.2019.00689. eCollection 2019.
2
Efficient anticorrelated variance reduction for stochastic simulation of biochemical reactions.
IET Syst Biol. 2019 Feb;13(1):16-23. doi: 10.1049/iet-syb.2018.5035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验