Suppr超能文献

将外在噪声纳入生化反应的随机模拟中:方法比较。

Incorporating extrinsic noise into the stochastic simulation of biochemical reactions: A comparison of approaches.

机构信息

The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura 1, 38068 Rovereto (TN), Italy.

出版信息

J Chem Phys. 2018 Feb 14;148(6):064111. doi: 10.1063/1.5016338.

Abstract

The stochastic simulation algorithm (SSA) has been widely used for simulating biochemical reaction networks. SSA is able to capture the inherently intrinsic noise of the biological system, which is due to the discreteness of species population and to the randomness of their reciprocal interactions. However, SSA does not consider other sources of heterogeneity in biochemical reaction systems, which are referred to as extrinsic noise. Here, we extend two simulation approaches, namely, the integration-based method and the rejection-based method, to take extrinsic noise into account by allowing the reaction propensities to vary in time and state dependent manner. For both methods, new efficient implementations are introduced and their efficiency and applicability to biological models are investigated. Our numerical results suggest that the rejection-based method performs better than the integration-based method when the extrinsic noise is considered.

摘要

随机模拟算法(SSA)已被广泛应用于模拟生化反应网络。SSA 能够捕捉到生物系统固有的内在噪声,这是由于物种种群的离散性和它们相互作用的随机性。然而,SSA 并没有考虑生化反应系统中其他来源的异质性,这些异质性被称为外在噪声。在这里,我们扩展了两种模拟方法,即基于积分的方法和基于拒绝的方法,通过允许反应倾向随时间和状态变化,从而考虑外在噪声。对于这两种方法,我们都引入了新的高效实现,并研究了它们的效率和在生物模型中的适用性。我们的数值结果表明,当考虑外在噪声时,基于拒绝的方法比基于积分的方法表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验