Suppr超能文献

相似文献

1
Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies.
BMC Bioinformatics. 2017 Mar 1;18(1):141. doi: 10.1186/s12859-017-1495-1.
2
Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
BMC Bioinformatics. 2015 Nov 9;16:375. doi: 10.1186/s12859-015-0797-4.
5
On the detection and refinement of transcription factor binding sites using ChIP-Seq data.
Nucleic Acids Res. 2010 Apr;38(7):2154-67. doi: 10.1093/nar/gkp1180. Epub 2010 Jan 6.
6
PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
PLoS Comput Biol. 2005 Dec;1(7):e67. doi: 10.1371/journal.pcbi.0010067. Epub 2005 Dec 9.
7
InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites.
Bioinformatics. 2017 Feb 15;33(4):580-582. doi: 10.1093/bioinformatics/btw689.
8
Disentangling transcription factor binding site complexity.
Nucleic Acids Res. 2018 Nov 16;46(20):e121. doi: 10.1093/nar/gky683.
9
Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
PLoS Comput Biol. 2017 Jul 28;13(7):e1005176. doi: 10.1371/journal.pcbi.1005176. eCollection 2017 Jul.
10
Prediction of transcription factor binding sites using ChIP-chip and phylogenetic footprinting data.
J Bioinform Comput Biol. 2007 Feb;5(1):105-16. doi: 10.1142/s0219720007002540.

引用本文的文献

1
Scoring Targets of Transcription in Bacteria Rather than Focusing on Individual Binding Sites.
Front Microbiol. 2017 Nov 22;8:2314. doi: 10.3389/fmicb.2017.02314. eCollection 2017.
2
Unrealistic phylogenetic trees may improve phylogenetic footprinting.
Bioinformatics. 2017 Jun 1;33(11):1639-1646. doi: 10.1093/bioinformatics/btx033.

本文引用的文献

1
Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
BMC Bioinformatics. 2015 Nov 9;16:375. doi: 10.1186/s12859-015-0797-4.
2
Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches.
Brief Funct Genomics. 2016 Jul;15(4):315-21. doi: 10.1093/bfgp/elv032. Epub 2015 Aug 20.
3
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.
Nat Biotechnol. 2015 Aug;33(8):831-8. doi: 10.1038/nbt.3300. Epub 2015 Jul 27.
4
Structural basis of transcription initiation by RNA polymerase II.
Nat Rev Mol Cell Biol. 2015 Mar;16(3):129-43. doi: 10.1038/nrm3952. Epub 2015 Feb 18.
5
SeAMotE: a method for high-throughput motif discovery in nucleic acid sequences.
BMC Genomics. 2014 Oct 23;15(1):925. doi: 10.1186/1471-2164-15-925.
6
Histone core modifications regulating nucleosome structure and dynamics.
Nat Rev Mol Cell Biol. 2014 Nov;15(11):703-8. doi: 10.1038/nrm3890. Epub 2014 Oct 15.
7
Motif-based analysis of large nucleotide data sets using MEME-ChIP.
Nat Protoc. 2014;9(6):1428-50. doi: 10.1038/nprot.2014.083. Epub 2014 May 22.
8
Dynamic regulation of transcriptional states by chromatin and transcription factors.
Nat Rev Genet. 2014 Feb;15(2):69-81. doi: 10.1038/nrg3623. Epub 2013 Dec 17.
9
A general approach for discriminative de novo motif discovery from high-throughput data.
Nucleic Acids Res. 2013 Nov;41(21):e197. doi: 10.1093/nar/gkt831. Epub 2013 Sep 20.
10
From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
J Bioinform Comput Biol. 2013 Feb;11(1):1340004. doi: 10.1142/S0219720013400040. Epub 2013 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验