Suppr超能文献

高能锂离子电池及超越锂离子电池的阴极表面涂覆技术的可行性。

Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

机构信息

Institute for Superconducting and Electronic Materials, School of Mechanical, Materials, and Mechatronics Engineering, University of Wollongong, NSW, 2500, Australia.

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 689-798, Ulsan, South Korea.

出版信息

Adv Mater. 2017 Dec;29(48). doi: 10.1002/adma.201605807. Epub 2017 Mar 2.

Abstract

Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable.

摘要

在循环过程中,阴极材料的降解是提升锂离子电池和超越锂离子电池在高能量和宽温度应用中性能的关键障碍之一。在此,我们强调了材料表面涂层作为主要解决方案的最新进展,以抵抗单价(Li、Na、K)和多价(Mg、Ca、Al)离子电池中阴极颗粒在高压和宽温度条件下的表面相转变和开裂。重要的是,我们探讨了材料表面涂层技术的未来和可能的研究方向。在这方面,我们提供了一种新颖的混合表面涂层策略的观点,该策略已在具有工业规格的恶劣条件下成功评估了基于 LiCoO2 的锂离子电池,适用于客户要求苛刻的应用。所提出的涂层策略包括对制备好的阴极粉末进行第一次表面涂层(通过溶胶-凝胶法),然后对其电极进行超薄膜状氧化物涂层(通过原子层沉积法)。这种涂层策略对工业应用具有吸引力,因为它可以有效地在阴极颗粒和电极水平上维持材料在机电应力下的完整性。此外,它在 4.55 V 和 45°C 下具有高负载电极(≈24 mg.cm-2)时,可提高能量密度和电压保持率。最后,这种超越锂离子电池的涂层技术的发展可能是一个重大的研究挑战,但也是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验