Suppr超能文献

通过封装纳米级锂离子/电子超离子导体混合膜来缓解富镍层状氧化物正极材料的表面降解,用于先进的锂离子电池。

Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.

机构信息

School of Material Science and Engineering, Changsha University of Science and Technology , Changsha 410004, P. R. China.

School of Metallurgy and Environment, Central South University , Changsha 410083, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2016 Nov 16;8(45):30879-30889. doi: 10.1021/acsami.6b09197. Epub 2016 Nov 2.

Abstract

Nickel-rich layered oxide cathode materials for advanced lithium-ion batteries have received much attention recently because of their high specific capacities and significant reduction of cost. However, these cathodes are facing a fundamental challenge of loss in performance as a result of surface lithium residue, side reactions with the electrolyte and structure rearrangement upon long-term cycling. Herein, by capturing the lithium residue on the surface of LiNiCoMnO (NCM) cathode material as Li source, we propose a hybrid coating strategy incorporating lithium ions conductor LiAlO with superconductor LiTiO to overcome those obstinate issues. By taking full advantage of this unique hybrid nanomembrane coating architecture, both the lithium ion diffusion ability and electronic conductivity of LiNiCoMnO cathode material are improved, resulting in remarkably enhanced electrochemical performances during high voltage operation, including good cycle performance, high reversible capacity, and excellent rate capability. A high initial discharge capacity of 227 mAh g at 4.4 V cutoff voltage with Coulombic efficiency of 87.3%, and reversible capacity of 200 mAh g with 98% capacity retention after 100 cycles at a current density of 0.5 C can be attained. The improved electrochemical performance can be attributed to the synergetic contribution from the removal of lithium residues and the unique hybrid nanomembrane coating architecture. Most importantly, this surface modification technique could save some cost, simplify the technical procedure, and show great potential to optimize battery performance, apply in a large scale and extend to all nickel-rich cathode material.

摘要

富镍层状氧化物正极材料由于具有高比容量和显著降低成本的优势,最近受到了广泛关注。然而,这些正极材料面临着一个基本的挑战,即在长期循环过程中,由于表面锂残留、与电解质的副反应和结构重排,其性能会下降。在此,我们通过捕获 LiNiCoMnO(NCM)正极材料表面的锂残留作为锂源,提出了一种将锂离子导体 LiAlO 与超导体 LiTiO 相结合的混合涂层策略,以克服这些顽固问题。通过充分利用这种独特的混合纳米膜涂层结构,LiNiCoMnO 正极材料的锂离子扩散能力和电子导电性都得到了提高,从而在高压运行时显著提高了电化学性能,包括良好的循环性能、高可逆容量和优异的倍率性能。在 4.4 V 截止电压下,初始放电容量高达 227 mAh g,库仑效率为 87.3%,在 0.5 C 的电流密度下循环 100 次后,可逆容量为 200 mAh g,容量保持率为 98%。电化学性能的提高归因于去除锂残留和独特的混合纳米膜涂层结构的协同贡献。最重要的是,这种表面改性技术可以节省一些成本,简化技术流程,并且具有优化电池性能、大规模应用和扩展到所有富镍正极材料的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验