Ben-Shalom Roy, Keeshen Caroline M, Berrios Kiara N, An Joon Y, Sanders Stephan J, Bender Kevin J
Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Neurology, San Francisco, San Francisco; Computational Research Division , Lawrence Berkeley National Laboratory, Berkeley, California.
Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Neurology, San Francisco, San Francisco.
Biol Psychiatry. 2017 Aug 1;82(3):224-232. doi: 10.1016/j.biopsych.2017.01.009. Epub 2017 Jan 27.
Variants in the SCN2A gene that disrupt the encoded neuronal sodium channel Na1.2 are important risk factors for autism spectrum disorder (ASD), developmental delay, and infantile seizures. Variants observed in infantile seizures are predominantly missense, leading to a gain of function and increased neuronal excitability. How variants associated with ASD affect Na1.2 function and neuronal excitability are unclear.
We examined the properties of 11 ASD-associated SCN2A variants in heterologous expression systems using whole-cell voltage-clamp electrophysiology and immunohistochemistry. Resultant data were incorporated into computational models of developing and mature cortical pyramidal cells that express Na1.2.
In contrast to gain of function variants that contribute to seizure, we found that all ASD-associated variants dampened or eliminated channel function. Incorporating these electrophysiological results into a compartmental model of developing excitatory neurons demonstrated that all ASD variants, regardless of their mechanism of action, resulted in deficits in neuronal excitability. Corresponding analysis of mature neurons predicted minimal change in neuronal excitability.
This functional characterization thus identifies SCN2A mutation and Na1.2 dysfunction as the most frequently observed ASD risk factor detectable by exome sequencing and suggests that associated changes in neuronal excitability, particularly in developing neurons, may contribute to ASD etiology.
SCN2A基因中破坏编码的神经元钠通道Na1.2的变异是自闭症谱系障碍(ASD)、发育迟缓及婴儿癫痫的重要风险因素。在婴儿癫痫中观察到的变异主要为错义变异,导致功能增强及神经元兴奋性增加。与ASD相关的变异如何影响Na1.2功能及神经元兴奋性尚不清楚。
我们使用全细胞电压钳电生理学和免疫组织化学,在异源表达系统中检测了11种与ASD相关的SCN2A变异的特性。所得数据被纳入表达Na1.2的发育中和成熟皮质锥体细胞的计算模型。
与导致癫痫的功能增强变异相反,我们发现所有与ASD相关的变异均减弱或消除了通道功能。将这些电生理结果纳入发育中的兴奋性神经元的房室模型表明,所有ASD变异,无论其作用机制如何,均导致神经元兴奋性缺陷。对成熟神经元的相应分析预测神经元兴奋性变化极小。
因此,这种功能特征确定SCN2A突变和Na1.2功能障碍是外显子组测序可检测到的最常见的ASD风险因素,并表明神经元兴奋性的相关变化,尤其是在发育中的神经元中,可能有助于ASD病因学研究。