Suppr超能文献

组织特异性肿瘤发生:背景很重要。

Tissue-specific tumorigenesis: context matters.

作者信息

Schneider Günter, Schmidt-Supprian Marc, Rad Roland, Saur Dieter

机构信息

Department of Medicine II (Gastroenterology and GI Oncology), Klinikum rechts der Isar, Technische Universität München, School of Medicine, Ismaningerstr. 22, 81675 München, Germany; and at the German Cancer Research Center (DKFZ) and the German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

Department of Medicine III (Haematology and Oncology), Klinikum rechts der Isar, Technische Universität München, School of Medicine, Ismaningerstr. 22, 81675 München, Germany; and at the DKFZ and the DKTK, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

出版信息

Nat Rev Cancer. 2017 Apr;17(4):239-253. doi: 10.1038/nrc.2017.5. Epub 2017 Mar 3.

Abstract

How can we treat cancer more effectively? Traditionally, tumours from the same anatomical site are treated as one tumour entity. This concept has been challenged by recent breakthroughs in cancer genomics and translational research that have enabled molecular tumour profiling. The identification and validation of cancer drivers that are shared between different tumour types, spurred the new paradigm to target driver pathways across anatomical sites by off-label drug use, or within so-called basket or umbrella trials which are designed to test whether molecular alterations in one tumour entity can be extrapolated to all others. However, recent clinical and preclinical studies suggest that there are tissue- and cell type-specific differences in tumorigenesis and the organization of oncogenic signalling pathways. In this Opinion article, we focus on the molecular, cellular, systemic and environmental determinants of organ-specific tumorigenesis and the mechanisms of context-specific oncogenic signalling outputs. Investigation, recognition and in-depth biological understanding of these differences will be vital for the design of next-generation clinical trials and the implementation of molecularly guided cancer therapies in the future.

摘要

我们如何更有效地治疗癌症?传统上,来自同一解剖部位的肿瘤被视为一个肿瘤实体。这一概念受到了癌症基因组学和转化研究近期突破的挑战,这些突破使得分子肿瘤剖析成为可能。不同肿瘤类型之间共享的癌症驱动因素的识别和验证,推动了新的范式,即通过使用未获批准的药物来靶向跨解剖部位的驱动途径,或者在所谓的篮子试验或伞形试验中进行,这些试验旨在测试一个肿瘤实体中的分子改变是否可以外推到所有其他实体。然而,最近的临床和临床前研究表明,肿瘤发生和致癌信号通路的组织和细胞类型特异性存在差异。在这篇观点文章中,我们关注器官特异性肿瘤发生的分子、细胞、全身和环境决定因素以及特定背景下致癌信号输出的机制。对这些差异的研究、认识和深入的生物学理解对于下一代临床试验的设计以及未来分子导向癌症治疗的实施至关重要。

相似文献

1
Tissue-specific tumorigenesis: context matters.
Nat Rev Cancer. 2017 Apr;17(4):239-253. doi: 10.1038/nrc.2017.5. Epub 2017 Mar 3.
2
Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma.
J Hematol Oncol. 2020 Oct 2;13(1):130. doi: 10.1186/s13045-020-00958-3.
3
Deciphering the universe of genetic context-dependencies using mouse models of cancer.
Curr Opin Genet Dev. 2019 Feb;54:97-104. doi: 10.1016/j.gde.2019.04.002. Epub 2019 May 9.
4
Immune modulatory effects of oncogenic KRAS in cancer.
Nat Commun. 2020 Oct 28;11(1):5439. doi: 10.1038/s41467-020-19288-6.
5
Cell-type specific tumorigenesis with Ras oncogenes in human lung epithelial cells.
Biochem Biophys Res Commun. 2020 Apr 30;525(2):483-490. doi: 10.1016/j.bbrc.2020.02.113. Epub 2020 Feb 25.
6
Oncogenic context shapes the fitness landscape of tumor suppression.
Nat Commun. 2023 Oct 12;14(1):6422. doi: 10.1038/s41467-023-42156-y.
7
ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold.
PLoS One. 2016 Jul 20;11(7):e0159677. doi: 10.1371/journal.pone.0159677. eCollection 2016.
8
Targeting KRAS in Colorectal Cancer: A Bench to Bedside Review.
Int J Mol Sci. 2023 Jul 27;24(15):12030. doi: 10.3390/ijms241512030.
9
The current state of the art and future trends in RAS-targeted cancer therapies.
Nat Rev Clin Oncol. 2022 Oct;19(10):637-655. doi: 10.1038/s41571-022-00671-9. Epub 2022 Aug 26.
10
Molecular pathways: targeting the dependence of mutant RAS cancers on the DNA damage response.
Clin Cancer Res. 2015 Mar 15;21(6):1243-7. doi: 10.1158/1078-0432.CCR-14-0650. Epub 2014 Nov 25.

引用本文的文献

1
Syndrome: What Do We Know of the Pathogenetic Mechanisms?
Cancers (Basel). 2025 Sep 2;17(17):2885. doi: 10.3390/cancers17172885.
2
Unravelling the genetics and epigenetics of the ageing tumour microenvironment in cancer.
Nat Rev Cancer. 2025 Sep 8. doi: 10.1038/s41568-025-00868-x.
3
Squidiff: Predicting cellular development and responses to perturbations using a diffusion model.
bioRxiv. 2025 Aug 26:2024.11.16.623974. doi: 10.1101/2024.11.16.623974.
4
5
Mitophagy's impacts on cancer and neurodegenerative diseases: implications for future therapies.
J Hematol Oncol. 2025 Aug 1;18(1):78. doi: 10.1186/s13045-025-01727-w.
6
How cancer arises: Genetics releases, plasticity creates, genetics stabilizes.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2505377122. doi: 10.1073/pnas.2505377122. Epub 2025 Jul 31.
7
Non-Coding RNAs in Diagnostic Pathology of High-Grade Central Osteosarcoma.
Diagnostics (Basel). 2025 May 28;15(11):1355. doi: 10.3390/diagnostics15111355.
8
Integrated pan-cancer analysis revealed therapeutic targets in the ABC transporter protein family.
PLoS One. 2025 May 30;20(5):e0308585. doi: 10.1371/journal.pone.0308585. eCollection 2025.
9
Death-ision: the link between cellular resilience and cancer resistance to treatments.
Mol Cancer. 2025 May 15;24(1):144. doi: 10.1186/s12943-025-02339-1.
10
BRAF Targeting Across Solid Tumors: Molecular Aspects and Clinical Applications.
Int J Mol Sci. 2025 Apr 16;26(8):3757. doi: 10.3390/ijms26083757.

本文引用的文献

1
Oncogenic KRAS and the EGFR loop in pancreatic carcinogenesis-A connection to licensing nodes.
Small GTPases. 2018 Nov 2;9(6):457-464. doi: 10.1080/21541248.2016.1262935. Epub 2017 Jan 20.
2
A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns.
Nature. 2016 Oct 20;538(7625):378-382. doi: 10.1038/nature19823. Epub 2016 Oct 12.
3
Tissue-specific mutation accumulation in human adult stem cells during life.
Nature. 2016 Oct 13;538(7624):260-264. doi: 10.1038/nature19768. Epub 2016 Oct 3.
4
Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers.
Science. 2016 Sep 9;353(6304):1161-5. doi: 10.1126/science.aaf5171.
5
Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers.
Nat Commun. 2016 Sep 2;7:12685. doi: 10.1038/ncomms12685.
6
Body Fatness and Cancer--Viewpoint of the IARC Working Group.
N Engl J Med. 2016 Aug 25;375(8):794-8. doi: 10.1056/NEJMsr1606602.
7
The biology and function of fibroblasts in cancer.
Nat Rev Cancer. 2016 Aug 23;16(9):582-98. doi: 10.1038/nrc.2016.73.
8
CRISPR/Cas9-Mediated Trp53 and Brca2 Knockout to Generate Improved Murine Models of Ovarian High-Grade Serous Carcinoma.
Cancer Res. 2016 Oct 15;76(20):6118-6129. doi: 10.1158/0008-5472.CAN-16-1272. Epub 2016 Aug 16.
9
CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations.
Mol Cell. 2016 Aug 4;63(3):526-38. doi: 10.1016/j.molcel.2016.06.017. Epub 2016 Jul 21.
10
Syndromic gastrointestinal stromal tumors.
Hered Cancer Clin Pract. 2016 Jul 19;14:15. doi: 10.1186/s13053-016-0055-4. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验