Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.
Adv Mater. 2017 May;29(19). doi: 10.1002/adma.201602795. Epub 2017 Mar 3.
The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO /BaTiO /SrRuO (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high PO2 (around 150 mTorr), usually exhibits a mixture of RuO -BaO and SrO-TiO terminations. By reducing PO2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells.
人工氧化物异质结构的原子尺度合成为创造自然界中不存在的新型状态提供了新的机会。合成这些结构的主要挑战是获得具有设计终止序列的原子级尖锐界面。在这项研究中,证明了生长过程中的氧压 (PO2) 在控制 SrRuO/BaTiO/SrRuO (SRO/BTO/SRO) 铁电 (FE) 电容器的界面终止方面起着重要作用。SRO/BTO/SRO 异质结构通过脉冲激光沉积方法生长。在高 PO2(约 150 毫托)下生长的顶部 SRO/BTO 界面通常表现出 RuO-BaO 和 SrO-TiO 终止的混合物。通过降低 PO2,作者获得了具有均匀 SrO-TiO 终止的原子级尖锐 SRO/BTO 顶部界面。使用具有对称和均匀界面终止的电容器器件,首次证明 FE 临界厚度可以达到 3.5 个单元的理论极限。