Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences , N-1432, Aas, Norway.
Anal Chem. 2017 Apr 4;89(7):4124-4130. doi: 10.1021/acs.analchem.6b05096. Epub 2017 Mar 15.
N isotope tracing is an effective and direct approach to investigate sources of nitric oxide (NO) formed in soils. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO) in the presence of ozone, making it impossible to directly measure N in NO. Various wet-chemical methods for conversion of NO to nitrite (NO) and nitrate (NO) have been proposed for N analysis in high-concentration NO sources, such as combustion processes. In contrast, NO concentrations in the soil surface-near air are usually small (ppbv-range), posing major challenges to conversion efficiency and blank correction. Here, we present a modified method in which NO is oxidized quantitatively to NO by chromium trioxide (CrO), before conversion to NO and NO in an alkaline hydrogen peroxide (HO) solution. A denitrifier method was used to reduce NO and NO in the trapping solution quantitatively to nitrous oxide (NO) for subsequent N analysis. NO trapping efficiencies of >85% were obtained with 50 ppb NO in a 0.5 L min air stream bubbling through a solution of 1.2 M HO and 0.5 M NaOH. In a laboratory test with distinct NO abundances, the overall precision was 0.29‰ (δ-values) for natural abundance NO and 0.13 atom % for labeled NO, suggesting that our method can be used for both natural abundance studies and N labeling experiments. In a soil incubation experiment with NHNO, NHNO, or NaNO amendments, we found distinct N abundances in NO, indicating that our method is well suited to investigate NO sources in soils.
N 同位素示踪法是一种有效且直接的方法,可用于研究土壤中形成的一氧化氮 (NO) 的来源。然而,NO 具有很高的反应活性,在臭氧存在下会迅速转化为二氧化氮 (NO),因此无法直接测量 NO 中的 N。已经提出了各种用于高浓度 NO 源(如燃烧过程)中 N 分析的将 NO 转化为亚硝酸盐 (NO) 和硝酸盐 (NO) 的湿化学方法。相比之下,土壤表面附近空气中的 NO 浓度通常较小(ppbv 范围),这对转化效率和空白校正构成了重大挑战。在这里,我们提出了一种改良的方法,其中三氧化铬 (CrO) 将 NO 定量氧化为 NO,然后在碱性过氧化氢 (HO) 溶液中将其转化为 NO 和 NO。采用反硝化方法将捕集溶液中的 NO 和 NO 定量还原为一氧化二氮 (NO),以便随后进行 N 分析。在以 50 ppb NO 通过以 1.2 M HO 和 0.5 M NaOH 为溶液的 0.5 L min 气流鼓泡的情况下,NO 捕集效率>85%。在具有不同 NO 丰度的实验室测试中,对于自然丰度的 NO,整体精度为 0.29‰(δ 值),对于标记的 NO,整体精度为 0.13 原子%,这表明我们的方法可用于自然丰度研究和 N 标记实验。在使用 NHNO、NHNO 或 NaNO 添加剂的土壤培养实验中,我们发现 NO 中的 N 丰度存在明显差异,这表明我们的方法非常适合于研究土壤中的 NO 来源。