Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland; University of Sheffield, Groundwater Protection and Restoration Group, Kroto Research Institute, Sheffield, UK.
University of Sheffield, Groundwater Protection and Restoration Group, Kroto Research Institute, Sheffield, UK.
J Environ Manage. 2018 Jan 15;206:1028-1038. doi: 10.1016/j.jenvman.2017.11.069. Epub 2017 Dec 7.
In North Atlantic Europe intensive dairy farms have a low nitrogen (N) use efficiency, with high N surpluses often negatively affecting water quality. Low feed input systems on heavy textured soils often need artificial drainage to utilise low cost grassland and remain profitable. Heavy textured soils have high but variable N attenuation potential, due to soil heterogeneity. Furthermore, drainage system design can influence the potential for N attenuation and subsequent N loadings in waters receiving drainage from such soils. The present study utilises end of pipe, open ditch and shallow groundwater sampling points across five sites in SW Ireland to compare and rank sites based on N surplus, water quality and "net denitrification", and to develop a conceptual framework for the improved management of heavy textured dairy sites to inform water quality N sustainability. This includes both drainage design and "net denitrification" criterion, as developed within this study.N surplus ranged from 211 to 292 kg N/ha (mean of 252 kg N/sourha) with a common source of organic N across all locations. The predicted soil organic matter (SOM) N release potential from top-subsoil layers was high, ranging from 115 to >146 kg N/ha. Stable isotopes analyses showed spatial variation in the extent of specific N-biotransformation processes, according to drainage location and design. Across all sites, nitrate (NO-N) was converted to ammonium (NH-N), which migrated offsite through open ditch and shallow groundwater pathways. Using the ensemble data the potential for soil N attenuation could be discriminated by 3 distinct groups reflecting the relative dominance of in situ N-biotransformation processes deduced from water composition: Group 1 (2 farms, ranked with high sustainability, NH < 0.23 mg N/l, δN-NO > 5‰ and δO-NO > 10‰), low NH-N concentration coupled with a high denitrification potential; Group 2 (1 farm with moderate sustainability, NH < 0.23 mg N/l, δN-NO < 8‰ and δO-NO < 8‰), low NH-N concentration with a high nitrification potential and a small component of complete denitrification; Group 3 (2 farms, ranked with low sustainability, NH > 0.23 mg N/l, 14‰ > δN-NO > 5‰ and 25‰ > δO-NO > -2‰), high NH-N concentration due to low denitrification. The installation of a shallow drainage system (e.g. mole or gravel moles at 0.4 m depth) reduced the "net denitrification" ranking of a site, leading to water quality issues. From this detailed work an N sustainability tool for any site, which presents the relationship between drainage class, drainage design (if present), completeness of denitrification, rate of denitrification and NH-N attenuation was developed. This tool allows a comparison or ranking of sites in terms of their N sustainability. The tool can also be used pre-land drainage and presents the consequences of future artificial land drainage on water quality and gaseous emissions at a given site.
在北大西洋欧洲,集约型奶牛场的氮(N)利用效率较低,往往存在大量氮盈余,这对水质有负面影响。在质地较重的土壤上采用低投入的饲料系统,往往需要人工排水,以利用低成本的草地并保持盈利。质地较重的土壤具有较高但可变的氮衰减潜力,这是由于土壤异质性造成的。此外,排水系统的设计可以影响从这些土壤中排水的水体中氮衰减和随后氮负荷的潜力。本研究利用爱尔兰西南部五个地点的末端管道、明沟和浅层地下水采样点,比较和根据氮盈余、水质和“净反硝化”对各地点进行排名,并为改进管理重质地奶牛场以提供信息,从而提高水质氮的可持续性。这包括本研究中开发的排水设计和“净反硝化”标准。氮盈余范围为 211 至 292 千克 N/公顷(平均 252 千克 N/公顷),所有地点的有机氮来源都相同。从表土和底土的预测土壤有机物质(SOM)氮释放潜力很高,范围为 115 至>146 千克 N/公顷。稳定同位素分析表明,根据排水位置和设计,特定氮生物转化过程的程度存在空间变化。在所有地点,硝酸盐(NO-N)都转化为氨(NH-N),通过明沟和浅层地下水途径迁移到场外。利用综合数据,可以根据水成分推断出的原位氮生物转化过程的相对优势,将土壤氮衰减的潜力分为 3 个不同的组进行区分:第 1 组(2 个农场,可持续性排名较高,NH < 0.23 毫克 N/升,δN-NO > 5‰,δO-NO > 10‰),NH-N 浓度较低,同时具有较高的反硝化潜力;第 2 组(1 个农场,可持续性中等,NH < 0.23 毫克 N/升,δN-NO < 8‰,δO-NO < 8‰),NH-N 浓度较低,硝化潜力较高,完全反硝化成分较小;第 3 组(2 个农场,可持续性排名较低,NH > 0.23 毫克 N/升,14‰>δN-NO > 5‰,25‰>δO-NO >-2‰),由于反硝化作用较低,NH-N 浓度较高。浅层排水系统(例如,深度为 0.4 米的浅沟或砾石浅沟)的安装降低了场地的“净反硝化”等级,导致水质问题。从这项详细的工作中,为任何场地开发了一种氮可持续性工具,该工具展示了排水等级、排水设计(如果存在)、反硝化的完整性、反硝化速率和 NH-N 衰减之间的关系。该工具可以比较或对场地的氮可持续性进行排名。该工具还可用于预土地排水,并呈现未来人工土地排水对给定场地水质和气体排放的影响。