Suppr超能文献

解析脯氨酸生物合成酶人吡咯啉-5-羧酸还原酶1中的辅因子结合位点。

Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1.

作者信息

Christensen Emily M, Patel Sagar M, Korasick David A, Campbell Ashley C, Krause Kurt L, Becker Donald F, Tanner John J

机构信息

From the Departments of Chemistry and.

the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588.

出版信息

J Biol Chem. 2017 Apr 28;292(17):7233-7243. doi: 10.1074/jbc.M117.780288. Epub 2017 Mar 3.

Abstract

Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ-pyrroline-5-carboxylate (P5C) to proline. Mutations in the gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.

摘要

吡咯啉 - 5 - 羧酸盐还原酶(PYCR)是脯氨酸生物合成中的最后一种酶,催化依赖NAD(P)H将Δ - 吡咯啉 - 5 - 羧酸盐(P5C)还原为脯氨酸。该基因的突变会改变线粒体功能并导致结缔组织疾病皮肤松弛症。此外,PYCR1在多种癌症中过表达,敲除该基因可抑制肿瘤生长,这表明PYCR1是一个潜在的癌症靶点。然而,由于该酶的作用机制细节有限,抑制剂的开发受到了阻碍,特别是鉴于之前的晶体学研究将辅因子结合位点定位在C末端结构域,而非预期的N末端结构域的Rossmann折叠结构域。为了填补这一空白,我们报告了人PYCR1的晶体学、沉降速度和动力学数据。以1.9 Å分辨率测定的PYCR1与NADPH或脯氨酸的二元复合物结构,为深入了解辅因子和底物识别提供了依据。我们发现NADPH结合在Rossmann折叠结构域上,距离先前提出的位点超过25 Å。含有NADPH和P5C/脯氨酸类似物的三元复合物的1.85 Å分辨率结构,提供了氢化物转移过程中形成的米氏复合物模型。沉降速度表明PYCR1在溶液中形成浓度依赖性的十聚体,这与晶体学观察到的二聚体五聚体组装一致。动力学和突变分析证实了晶体结构中观察到的几个特征,包括苏氨酸 - 238与底物之间氢键的重要性以及有限的辅因子识别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验