Institut für Ökologische und Nachhaltige Chemie (IÖNC), Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
Institut für Halbleitertechnik (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany; Laboratory for Emerging Nanometrology (LENA), Langer Kamp 6a, 38106 Braunschweig, Germany; Inorganic Chemistry Department, National Research Centre (NRC), El Buhouth St., Dokki, 12622 Cairo, Egypt.
Biosens Bioelectron. 2017 Aug 15;94:74-80. doi: 10.1016/j.bios.2017.02.042. Epub 2017 Feb 24.
Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but require transparent, highly conductive and biocompatible electrodes. Whereas indium tin oxide (ITO) is a well-known transparent conductive oxide, it is a non-ideal platform for biofilm growth. Here, a straightforward approach of surface modification of ITO anodes with gold (Au) is demonstrated, to enhance direct microbial biofilm cultivation on their surface and to improve the produced current densities. The trade-off between the electrode transmittance (critical for the underlying integrated sensors) and the enhanced growth of biofilms (crucial for direct monitoring) is studied. Au-modified ITO electrodes show a faster and reproducible biofilm growth with three times higher maximum current densities and about 6.9 times thicker biofilms compared to their unmodified ITO counterparts. The electrochemical analysis confirms the enhanced performance and the reversibility of the ITO/Au electrodes. The catalytic effect of Au on the ITO surface seems to be the key factor of the observed performance improvement since the changes in the electrode conductivity and their surface wettability are relatively small and in the range of ITO. An integrated platform for the ITO/Au transparent electrode with light-emitting diodes was fabricated and its feasibility for optical biofilm thickness monitoring is demonstrated. Such transparent electrodes with embedded catalytic metals can serve as multifunctional windows for biofilm diagnostic microchips.
微生物电化学技术(METs)是新兴的绿色生物能源领域之一,它利用微生物进行废水处理或电合成。在运行过程中实时监测生物过程是理解和进一步提高生物能源收集的前提。光学方法是实现这一目标的有力工具,但需要透明、高导电性和生物相容性的电极。尽管铟锡氧化物(ITO)是一种众所周知的透明导电氧化物,但它并不是生物膜生长的理想平台。在这里,我们展示了一种简单的方法,即用金(Au)对 ITO 阳极进行表面修饰,以增强其表面上直接微生物生物膜的培养,并提高产生的电流密度。研究了电极透过率(对底层集成传感器至关重要)和生物膜生长(直接监测至关重要)之间的权衡。与未修饰的 ITO 相比,Au 修饰的 ITO 电极显示出更快、更可重复的生物膜生长,最大电流密度提高了三倍,生物膜厚度增加了约 6.9 倍。电化学分析证实了 ITO/Au 电极的增强性能和可重复性。Au 对 ITO 表面的催化作用似乎是观察到的性能改进的关键因素,因为电极电导率和表面润湿性的变化相对较小,并且在 ITO 的范围内。制造了带有发光二极管的 ITO/Au 透明电极集成平台,并证明了其用于光学生物膜厚度监测的可行性。这种带有嵌入式催化金属的透明电极可以作为生物膜诊断微芯片的多功能窗口。