Suppr超能文献

曲妥珠单抗的群体药代动力学-药效学模型:量化和预测个体间变异性的框架。

Population PBPK modelling of trastuzumab: a framework for quantifying and predicting inter-individual variability.

作者信息

Malik Paul R V, Hamadeh Abdullah, Phipps Colin, Edginton Andrea N

机构信息

School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener, ON, N2G 1C5, Canada.

出版信息

J Pharmacokinet Pharmacodyn. 2017 Jun;44(3):277-290. doi: 10.1007/s10928-017-9515-3. Epub 2017 Mar 4.

Abstract

In this work we proposed a population physiologically-based pharmacokinetic (popPBPK) framework for quantifying and predicting inter-individual pharmacokinetic variability using the anti-HER2 monoclonal antibody (mAb) trastuzumab as an example. First, a PBPK model was developed to account for the possible mechanistic sources of variability. Within the model, five key factors that contribute to variability were identified and the nature of their contribution was quantified with local and global sensitivity analyses. The five key factors were the concentration of membrane-bound HER2 ([Formula: see text]), the convective flow rate of mAb through vascular pores ([Formula: see text]), the endocytic transport rate of mAb through vascular endothelium ([Formula: see text]), the degradation rate of mAb-HER2 complexes ([Formula: see text]) and the concentration of shed HER2 extracellular domain in circulation ([Formula: see text]). [Formula: see text] was the most important parameter governing trastuzumab distribution into tissues and primarily affected variability in the first 500 h post-administration. [Formula: see text] was the most significant contributor to variability in clearance. These findings were used together with population generation methods to accurately predict the observed variability in four experimental trials with trastuzumab. To explore anthropometric sources of variability, virtual populations were created to represent participants in the four experimental trials. Using populations with only their expected anthropometric diversity resulted in under-prediction of the observed inter-individual variability. Adapting the populations to include literature-based variability around the five key parameters enabled accurate predictions of the variability in the four trials. The successful application of this framework demonstrates the utility of popPBPK methods to understand the mechanistic underpinnings of pharmacokinetic variability.

摘要

在本研究中,我们提出了一种基于群体生理药代动力学(popPBPK)的框架,以抗HER2单克隆抗体(mAb)曲妥珠单抗为例,量化和预测个体间药代动力学变异性。首先,开发了一个PBPK模型来解释变异性可能的机制来源。在该模型中,确定了导致变异性的五个关键因素,并通过局部和全局敏感性分析对其贡献的性质进行了量化。这五个关键因素是膜结合HER2的浓度([公式:见正文])、mAb通过血管孔的对流流速([公式:见正文])、mAb通过血管内皮的内吞转运速率([公式:见正文])、mAb-HER2复合物的降解速率([公式:见正文])以及循环中脱落HER2细胞外结构域的浓度([公式:见正文])。[公式:见正文]是控制曲妥珠单抗在组织中分布的最重要参数,主要影响给药后前500小时的变异性。[公式:见正文]是清除率变异性的最主要贡献者。这些发现与群体生成方法一起用于准确预测曲妥珠单抗四项实验研究中观察到的变异性。为了探索变异性的人体测量学来源,创建了虚拟群体来代表四项实验研究中的参与者。仅使用具有预期人体测量学多样性的群体导致对观察到的个体间变异性预测不足。使群体适应包括围绕五个关键参数的基于文献的变异性,能够准确预测四项研究中的变异性。该框架的成功应用证明了popPBPK方法在理解药代动力学变异性机制基础方面的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验