Suppr超能文献

利用i2b2推动农村卫生分析与学习网络发展。

Using i2b2 to Bootstrap Rural Health Analytics and Learning Networks.

作者信息

Harris Daniel R, Baus Adam D, Harper Tamela J, Jarrett Traci D, Pollard Cecil R, Talbert Jeffery C

机构信息

Center for Clinical and Translational Sciences and the Institute for Pharmaceutical Outcomes and Policy at the University of Kentucky, Lexington, Kentucky 40506.

School of Public Health at West Virginia University, Morgantown, wv 26506.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2533-2536. doi: 10.1109/EMBC.2016.7591246.

Abstract

We demonstrate that the open-source i2b2 (Informatics for Integrating Biology and the Bedside) data model can be used to bootstrap rural health analytics and learning networks. These networks promote communication and research initiatives by providing the infrastructure necessary for sharing data and insights across a group of healthcare and research partners. Data integration remains a crucial challenge in connecting rural healthcare sites with a common data sharing and learning network due to the lack of interoperability and standards within electronic health records. The i2b2 data model acts as a point of convergence for disparate data from multiple healthcare sites. A consistent and natural data model for healthcare data is essential for overcoming integration issues, but challenges such as those caused by weak data standardization must still be addressed. We describe our experience in the context of building the West Virginia/Kentucky Health Analytics and Learning Network, a collaborative, multi-state effort connecting rural healthcare sites.

摘要

我们证明,开源的i2b2(整合生物学与床边信息学)数据模型可用于启动农村健康分析和学习网络。这些网络通过提供在一组医疗保健和研究合作伙伴之间共享数据和见解所需的基础设施,促进沟通和研究计划。由于电子健康记录缺乏互操作性和标准,在将农村医疗保健站点与通用数据共享和学习网络连接起来时,数据集成仍然是一个关键挑战。i2b2数据模型充当来自多个医疗保健站点的不同数据的汇聚点。一致且自然的医疗保健数据模型对于克服集成问题至关重要,但仍必须解决诸如数据标准化薄弱所导致的挑战。我们在构建西弗吉尼亚州/肯塔基州健康分析和学习网络的背景下描述了我们的经验,这是一项连接农村医疗保健站点的跨州合作努力。

相似文献

1
Using i2b2 to Bootstrap Rural Health Analytics and Learning Networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2533-2536. doi: 10.1109/EMBC.2016.7591246.
2
Data interchange using i2b2.
J Am Med Inform Assoc. 2016 Sep;23(5):909-15. doi: 10.1093/jamia/ocv188. Epub 2016 Feb 5.
3
Distributed data networks: a blueprint for Big Data sharing and healthcare analytics.
Ann N Y Acad Sci. 2017 Jan;1387(1):105-111. doi: 10.1111/nyas.13287. Epub 2016 Nov 18.
5
Big Data Analytics in Medicine and Healthcare.
J Integr Bioinform. 2018 May 10;15(3):20170030. doi: 10.1515/jib-2017-0030.
6
PaTH: towards a learning health system in the Mid-Atlantic region.
J Am Med Inform Assoc. 2014 Jul-Aug;21(4):633-6. doi: 10.1136/amiajnl-2014-002759. Epub 2014 May 12.
7
A guide for the application of analytics on healthcare processes: A dynamic view on patient pathways.
Comput Biol Med. 2016 Oct 1;77:125-34. doi: 10.1016/j.compbiomed.2016.08.007. Epub 2016 Aug 6.
8
Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values.
PLoS One. 2016 May 19;11(5):e0155119. doi: 10.1371/journal.pone.0155119. eCollection 2016.
10
Using Distributed Data over HBase in Big Data Analytics Platform for Clinical Services.
Comput Math Methods Med. 2017;2017:6120820. doi: 10.1155/2017/6120820. Epub 2017 Dec 11.

引用本文的文献

1
Using Closure Tables to Enable Cross-Querying of Ontologies in Database-Driven Applications.
IEEE EMBS Int Conf Biomed Health Inform. 2017 Feb;2017:493-496. doi: 10.1109/BHI.2017.7897313. Epub 2017 Apr 13.

本文引用的文献

1
Informatics-based Challenges of Building Collaborative Healthcare Research and Analysis Networks from Rural Community Health Centers.
IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:513-516. doi: 10.1109/BHI.2016.7455947. Epub 2016 Apr 21.
2
i2b2t2: Unlocking Visualization for Clinical Research.
AMIA Jt Summits Transl Sci Proc. 2016 Jul 20;2016:98-104. eCollection 2016.
3
Federalist principles for healthcare data networks.
Nat Biotechnol. 2015 Apr;33(4):360-3. doi: 10.1038/nbt.3180.
4
Efficient Execution Methods of Pivoting for Bulk Extraction of Entity-Attribute-Value-Modeled Data.
IEEE J Biomed Health Inform. 2016 Mar;20(2):644-54. doi: 10.1109/JBHI.2015.2392553. Epub 2015 Jan 15.
5
Semantic Normalization and Query Abstraction Based on SNOMED-CT and HL7: Supporting Multicentric Clinical Trials.
IEEE J Biomed Health Inform. 2015 May;19(3):1061-7. doi: 10.1109/JBHI.2014.2357025. Epub 2014 Sep 17.
7
Geographic variation in ambulatory electronic health record adoption: implications for underserved communities.
Health Serv Res. 2013 Dec;48(6 Pt 1):2037-59. doi: 10.1111/1475-6773.12078. Epub 2013 Jun 26.
8
SHRINE: enabling nationally scalable multi-site disease studies.
PLoS One. 2013;8(3):e55811. doi: 10.1371/journal.pone.0055811. Epub 2013 Mar 7.
9
A translational engine at the national scale: informatics for integrating biology and the bedside.
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):181-5. doi: 10.1136/amiajnl-2011-000492. Epub 2011 Nov 10.
10
Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership.
Ann Intern Med. 2010 Nov 2;153(9):600-6. doi: 10.7326/0003-4819-153-9-201011020-00010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验