Harris Daniel R, Henderson Darren W, Talbert Jeffery C
Center for Clinical and Translational Sciences, University of Kentucky, Lexington, Kentucky 40506.
IEEE EMBS Int Conf Biomed Health Inform. 2017 Feb;2017:493-496. doi: 10.1109/BHI.2017.7897313. Epub 2017 Apr 13.
We demonstrate that closure tables are an effective data structure for developing database-driven applications that query biomedical ontologies and that require cross-querying between multiple ontologies. A closure table stores all available paths within a tree, even those without a direct parent-child relationship; additionally, a node can have multiple ancestors which gives the foundation for supporting linkages between controlled ontologies. We augment the meta-data structure of the ICD9 and ICD10 ontologies included in i2b2, an open source query tool for identifying patient cohorts, to utilize a closure table. We describe our experiences in incorporating existing mappings between ontologies to enable clinical and health researchers to identify patient populations using the ontology that best matches their preference and expertise.
我们证明,闭包表是一种有效的数据结构,可用于开发查询生物医学本体且需要在多个本体之间进行交叉查询的数据库驱动应用程序。闭包表存储树内的所有可用路径,即使是那些没有直接父子关系的路径;此外,一个节点可以有多个祖先,这为支持受控本体之间的联系奠定了基础。我们增强了i2b2(一种用于识别患者队列的开源查询工具)中包含的ICD9和ICD10本体的元数据结构,以利用闭包表。我们描述了在纳入本体之间的现有映射方面的经验,以使临床和健康研究人员能够使用最符合其偏好和专业知识的本体来识别患者群体。