Suppr超能文献

步行中速度和推进力对关节能量产生的独立影响。

The independent effects of speed and propulsive force on joint power generation in walking.

作者信息

Browne Michael G, Franz Jason R

机构信息

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.

出版信息

J Biomech. 2017 Apr 11;55:48-55. doi: 10.1016/j.jbiomech.2017.02.011. Epub 2017 Feb 21.

Abstract

Walking speed is modulated using propulsive forces (F) during push-off and both preferred speed and F decrease with aging. However, even prior to walking slower, reduced F may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time F measurements to decouple and investigate the interaction between joint-level coordination, whole-body F, and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9-1.3m/s). We immediately calculated the average F from each speed. Subjects then walked at 1.3m/s while completing a series of biofeedback trials with instructions to match their instantaneous F to their averaged F from slower speeds. Walking slower decreased F and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced F, not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body F, and walking speed in our aging population.

摘要

在蹬离阶段,行走速度通过推进力(F)进行调节,且偏好速度和推进力都会随着年龄增长而下降。然而,甚至在行走速度变慢之前,推进力降低可能就伴随着关节功率产生的潜在不利变化。例如,与年轻人相比,老年人在机械功率产生方面表现出从推进性跖屈肌向跨越膝盖和髋部的更靠近身体近端的肌肉重新分配。在此,我们基于实时推进力测量使用视觉生物反馈来分离并研究关节水平协调、全身推进力和行走速度之间的相互作用。12名健康的年轻受试者在双带式仪器化跑步机上以一系列速度(0.9 - 1.3米/秒)行走。我们立即计算出每个速度下的平均推进力。然后,受试者以1.3米/秒的速度行走,同时完成一系列生物反馈试验,并按照指令将其瞬时推进力与较慢速度下的平均推进力相匹配。行走速度变慢会降低推进力和总的正向关节功,而对相对关节水平的贡献影响不大。相反,受试者以恒定速度行走且推进力降低,并非通过减少总的正向关节功,而是通过将每一步的机械需求从蹬离阶段的跖屈肌重新分配到单支撑阶段更靠近身体近端的腿部肌肉。有趣的是,在没有神经肌肉限制的情况下,这些自然出现的关节和肢体水平的生物力学变化类似于因衰老而产生的变化。我们的研究结果为理解老年人群中关节功率产生、全身推进力和行走速度之间可能复杂的相互作用提供了重要的参考数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb9e/5555113/2cdadd03244b/nihms857585f1.jpg

相似文献

7
Muscle metabolic energy costs while modifying propulsive force generation during walking.行走过程中改变推进力产生时的肌肉代谢能量消耗。
Comput Methods Biomech Biomed Engin. 2021 Nov;24(14):1552-1565. doi: 10.1080/10255842.2021.1900134. Epub 2021 Mar 22.

引用本文的文献

本文引用的文献

8
Real-time feedback enhances forward propulsion during walking in old adults.实时反馈可增强老年人行走时的向前推进力。
Clin Biomech (Bristol). 2014 Jan;29(1):68-74. doi: 10.1016/j.clinbiomech.2013.10.018. Epub 2013 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验