Gleb Wataghin Physics Institute, University of Campinas, 13083-859 Campinas, SP, Brazil.
Sci Rep. 2017 Mar 6;7:43423. doi: 10.1038/srep43423.
The simultaneous control of optical and mechanical waves has enabled a range of fundamental and technological breakthroughs, from the demonstration of ultra-stable frequency reference devices, to the exploration of the quantum-classical boundaries in optomechanical laser-cooling experiments. More recently, such an optomechanical interaction has been observed in integrated nano-waveguides and microcavities in the Brillouin regime, where short-wavelength mechanical modes scatter light at several GHz. Here we engineer coupled optical microcavities to enable a low threshold excitation of mechanical travelling-wave modes through backward stimulated Brillouin scattering. Exploring the backward scattering we propose silicon microcavity designs based on laterally coupled single and double-layer cavities, the proposed structures enable optomechanical coupling with very high frequency modes (11 to 25 GHz) and large optomechanical coupling rates (g/2π) from 50 kHz to 90 kHz.
光学和机械波的同步控制实现了一系列基础和技术突破,从超稳定频率参考设备的演示,到光机械激光冷却实验中量子经典边界的探索。最近,在布里渊区的集成纳米波导和微腔中观察到了这种光机械相互作用,其中短波长机械模式以数 GHz 的频率散射光。在这里,我们设计了耦合的光学微腔,通过后向受激布里渊散射实现对机械行波模式的低阈值激发。通过探索后向散射,我们提出了基于横向耦合的单层和双层腔的硅微腔设计,所提出的结构能够实现与非常高频模式(11 至 25 GHz)的光机械耦合以及高达 90 kHz 的大光机械耦合率(g/2π)。