Suppr超能文献

在 CMOS 工厂中制造的超高 Q 光机械晶体腔。

Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry.

机构信息

Applied Physics Department, Gleb Wataghin Physics Institute, University of Campinas, Campinas, 13083-859, SP, Brazil.

出版信息

Sci Rep. 2017 May 30;7(1):2491. doi: 10.1038/s41598-017-02515-4.

Abstract

Photonic crystals use periodic structures to create frequency regions where the optical wave propagation is forbidden, which allows the creation and integration of complex optical functionalities in small footprint devices. Such strategy has also been successfully applied to confine mechanical waves and to explore their interaction with light in the so-called optomechanical cavities. Because of their challenging design, these cavities are traditionally fabricated using dedicated high-resolution electron-beam lithography tools that are inherently slow, limiting this solution to small-scale or research applications. Here we show how to overcome this problem by using a deep-UV photolithography process to fabricate optomechanical crystals in a commercial CMOS foundry. We show that a careful design of the photonic crystals can withstand the limitations of the photolithography process, producing cavities with measured intrinsic optical quality factors as high as Q  = (1.21 ± 0.02) × 10. Optomechanical crystals are also created using phononic crystals to tightly confine the GHz sound waves within the optical cavity, resulting in a measured vacuum optomechanical coupling rate of g  = 2π × (91 ± 4) kHz. Efficient sideband cooling and amplification are also demonstrated since these cavities are in the resolved sideband regime. Further improvements in the design and fabrication process suggest that commercial foundry-based optomechanical cavities could be used for quantum ground-state cooling.

摘要

光子晶体利用周期性结构来创建禁止光传播的频率区域,从而可以在小尺寸设备中创建和集成复杂的光学功能。这种策略也已成功应用于机械波的限制,并探索了它们与光在所谓的光机械腔中的相互作用。由于其具有挑战性的设计,这些腔传统上使用专用的高分辨率电子束光刻工具制造,而电子束光刻工具本身速度较慢,这将这种解决方案限制在小规模或研究应用中。在这里,我们展示了如何通过使用深紫外光刻工艺在商业 CMOS 代工厂中制造光机械晶体来克服此问题。我们表明,对光子晶体的精心设计可以承受光刻工艺的限制,从而产生的腔具有高达 Q  = (1.21 ± 0.02) × 10 的测量固有光学品质因数。还使用声子晶体创建了光机械晶体,以将 GHz 声波紧密限制在光学腔中,从而导致测量的真空光机械耦合率为 g  = 2π × (91 ± 4) kHz。由于这些腔处于分辩边带区域,因此还证明了有效的边带冷却和放大。进一步改进设计和制造工艺表明,基于商业代工厂的光机械腔可用于量子基态冷却。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aac/5449385/3bad8ece2b37/41598_2017_2515_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验