Tratnyek Paul G, Bylaska Eric J, Weber Eric J
Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
Environ Sci Process Impacts. 2017 Mar 22;19(3):188-202. doi: 10.1039/c7em00053g.
Quantitative structure-activity relationships (QSARs) have long been used in the environmental sciences. More recently, molecular modeling and chemoinformatic methods have become widespread. These methods have the potential to expand and accelerate advances in environmental chemistry because they complement observational and experimental data with "in silico" results and analysis. The opportunities and challenges that arise at the intersection between statistical and theoretical in silico methods are most apparent in the context of properties that determine the environmental fate and effects of chemical contaminants (degradation rate constants, partition coefficients, toxicities, etc.). The main example of this is the calibration of QSARs using descriptor variable data calculated from molecular modeling, which can make QSARs more useful for predicting property data that are unavailable, but also can make them more powerful tools for diagnosis of fate determining pathways and mechanisms. Emerging opportunities for "in silico environmental chemical science" are to move beyond the calculation of specific chemical properties using statistical models and toward more fully in silico models, prediction of transformation pathways and products, incorporation of environmental factors into model predictions, integration of databases and predictive models into more comprehensive and efficient tools for exposure assessment, and extending the applicability of all the above from chemicals to biologicals and materials.
定量构效关系(QSARs)长期以来一直在环境科学中使用。最近,分子建模和化学信息学方法已广泛应用。这些方法有潜力扩展和加速环境化学的进展,因为它们用“计算机模拟”结果和分析补充观测和实验数据。在确定化学污染物的环境归宿和影响的性质(降解速率常数、分配系数、毒性等)的背景下,统计和理论计算机模拟方法交叉处出现的机遇和挑战最为明显。这方面的主要例子是使用从分子建模计算得到的描述符变量数据校准QSARs,这可以使QSARs在预测无法获得的性质数据时更有用,而且还可以使其成为诊断归宿决定途径和机制的更强大工具。“计算机模拟环境化学科学”的新机遇在于,从使用统计模型计算特定化学性质,转向更全面的计算机模拟模型、预测转化途径和产物、将环境因素纳入模型预测、将数据库和预测模型整合为更全面高效的暴露评估工具,以及将上述所有内容的适用性从化学品扩展到生物制品和材料。