National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):197-217. doi: 10.1080/10937404.2010.483935.
Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals (U.S. EPA, 2009a). Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast) and exposure (ExpoCast), and creating virtual liver (v-Liver) and virtual embryo (v-Embryo) systems models. U.S. EPA-funded STAR centers are also providing bioinformatics, computational toxicology data and models, and developmental toxicity data and models. The models and underlying data are being made publicly available through the Aggregated Computational Toxicology Resource (ACToR), the Distributed Structure-Searchable Toxicity (DSSTox) Database Network, and other U.S. EPA websites. While initially focused on improving the hazard identification process, the CTRP is placing increasing emphasis on using high-throughput bioactivity profiling data in systems modeling to support quantitative risk assessments, and in developing complementary higher throughput exposure models. This integrated approach will enable analysis of life-stage susceptibility, and understanding of the exposures, pathways, and key events by which chemicals exert their toxicity in developing systems (e.g., endocrine-related pathways). The CTRP will be a critical component in next-generation risk assessments utilizing quantitative high-throughput data and providing a much higher capacity for assessing chemical toxicity than is currently available.
计算毒理学是应用数学和计算机模型来帮助评估化学危害和对人类健康和环境的风险。在美国环境保护署 (EPA) 的支持下,信息学、高通量筛选 (HTS) 技术和系统生物学的进步,正在开发强大且灵活的计算工具,这些工具可以应用于商业中的数千种化学物质以及空气中、水中和危险废物场所发现的污染物混合物。研发办公室 (ORD) 的计算毒理学研究计划 (CTRP) 由三个主要部分组成。最大的部分是国家计算毒理学中心 (NCCT),该中心成立于 2005 年,旨在协调化学筛选和优先级排序、信息学和系统建模方面的研究。第二部分由国家健康与环境影响研究实验室 (NHEERL) 和国家暴露研究实验室 (NERL) 的相关活动组成。第三部分也是最后一部分由美国 EPA 科学实现成果 (STAR) 计划资助的各个计算毒理学领域的学术中心组成。这些元素共同构成了实施初始策略(美国 EPA,2003 年)和新发布的《美国环境保护署评估化学品毒性的战略计划》(美国 EPA,2009a)的关键组成部分。CTRP 的关键内部项目包括数字化传统毒性测试信息毒性参考数据库 (ToxRefDB)、预测毒性 (ToxCast) 和暴露 (ExpoCast),以及创建虚拟肝脏 (v-Liver) 和虚拟胚胎 (v-Embryo) 系统模型。美国 EPA 资助的 STAR 中心还提供生物信息学、计算毒理学数据和模型以及发育毒性数据和模型。这些模型和基础数据正在通过综合计算毒理学资源 (ACToR)、分布式结构可搜索毒性 (DSSTox) 数据库网络和其他美国 EPA 网站公开提供。虽然最初专注于改善危害识别过程,但 CTRP 越来越强调在系统建模中使用高通量生物活性分析数据来支持定量风险评估,并开发互补的更高通量暴露模型。这种综合方法将能够分析生命阶段的易感性,并了解化学物质在发育系统中发挥毒性的暴露途径和关键事件(例如,与内分泌相关的途径)。CTRP 将成为利用定量高通量数据进行下一代风险评估的关键组成部分,并提供比目前更高的评估化学毒性的能力。