Suppr超能文献

使用预测的接触数作为约束条件来改进膜蛋白中螺旋-螺旋堆积的预测。

Improving prediction of helix-helix packing in membrane proteins using predicted contact numbers as restraints.

作者信息

Li Bian, Mendenhall Jeffrey, Nguyen Elizabeth Dong, Weiner Brian E, Fischer Axel W, Meiler Jens

机构信息

Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232.

Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232.

出版信息

Proteins. 2017 Jul;85(7):1212-1221. doi: 10.1002/prot.25281. Epub 2017 Apr 1.

Abstract

One of the challenging problems in tertiary structure prediction of helical membrane proteins (HMPs) is the determination of rotation of α-helices around the helix normal. Incorrect prediction of helix rotations substantially disrupts native residue-residue contacts while inducing only a relatively small effect on the overall fold. We previously developed a method for predicting residue contact numbers (CNs), which measure the local packing density of residues within the protein tertiary structure. In this study, we tested the idea of incorporating predicted CNs as restraints to guide the sampling of helix rotation. For a benchmark set of 15 HMPs with simple to rather complicated folds, the average contact recovery (CR) of best-sampled models was improved for all targets, the likelihood of sampling models with CR greater than 20% was increased for 13 targets, and the average RMSD100 of best-sampled models was improved for 12 targets. This study demonstrated that explicit incorporation of CNs as restraints improves the prediction of helix-helix packing. Proteins 2017; 85:1212-1221. © 2017 Wiley Periodicals, Inc.

摘要

预测螺旋膜蛋白(HMPs)三级结构时面临的一个具有挑战性的问题是确定α螺旋围绕螺旋轴的旋转。螺旋旋转的错误预测会严重破坏天然的残基-残基接触,而对整体折叠的影响相对较小。我们之前开发了一种预测残基接触数(CNs)的方法,该方法用于衡量蛋白质三级结构中残基的局部堆积密度。在本研究中,我们测试了将预测的CNs作为约束条件来指导螺旋旋转采样的想法。对于一组包含15个具有简单到相当复杂折叠的HMPs的基准数据集,所有目标的最佳采样模型的平均接触恢复率(CR)均有所提高,13个目标采样到CR大于20%的模型的可能性增加,12个目标的最佳采样模型的平均RMSD100有所改善。这项研究表明,明确将CNs作为约束条件可改善螺旋-螺旋堆积的预测。《蛋白质》2017年;85:1212 - 1221。© 2017威利期刊公司。

相似文献

1
Improving prediction of helix-helix packing in membrane proteins using predicted contact numbers as restraints.
Proteins. 2017 Jul;85(7):1212-1221. doi: 10.1002/prot.25281. Epub 2017 Apr 1.
2
Comparison of helix interactions in membrane and soluble alpha-bundle proteins.
Biophys J. 2002 May;82(5):2720-36. doi: 10.1016/S0006-3495(02)75613-0.
3
Internal packing of helical membrane proteins.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5796-801. doi: 10.1073/pnas.97.11.5796.
4
Predicting transmembrane helix packing arrangements using residue contacts and a force-directed algorithm.
PLoS Comput Biol. 2010 Mar 19;6(3):e1000714. doi: 10.1371/journal.pcbi.1000714.
5
Fold prediction of helical proteins using torsion angle dynamics and predicted restraints.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3581-5. doi: 10.1073/pnas.052003799.
6
CONFOLD: Residue-residue contact-guided ab initio protein folding.
Proteins. 2015 Aug;83(8):1436-49. doi: 10.1002/prot.24829. Epub 2015 Jun 6.
8
An amino acid packing code for α-helical structure and protein design.
J Mol Biol. 2012 Jun 8;419(3-4):234-54. doi: 10.1016/j.jmb.2012.03.004. Epub 2012 Mar 15.
9
Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.
Structure. 2018 Apr 3;26(4):657-666.e2. doi: 10.1016/j.str.2018.02.006. Epub 2018 Mar 8.

引用本文的文献

1
A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins.
J Proteome Res. 2021 Aug 6;20(8):4089-4100. doi: 10.1021/acs.jproteome.1c00410. Epub 2021 Jul 8.
3
Interfaces Between Alpha-helical Integral Membrane Proteins: Characterization, Prediction, and Docking.
Comput Struct Biotechnol J. 2019 May 25;17:699-711. doi: 10.1016/j.csbj.2019.05.005. eCollection 2019.
4
Predicting the Functional Impact of KCNQ1 Variants of Unknown Significance.
Circ Cardiovasc Genet. 2017 Oct;10(5). doi: 10.1161/CIRCGENETICS.117.001754.
5
Finding the needle in the haystack: towards solving the protein-folding problem computationally.
Crit Rev Biochem Mol Biol. 2018 Feb;53(1):1-28. doi: 10.1080/10409238.2017.1380596. Epub 2017 Oct 4.

本文引用的文献

1
CASP11--An Evaluation of a Modular BCL::Fold-Based Protein Structure Prediction Pipeline.
PLoS One. 2016 Apr 5;11(4):e0152517. doi: 10.1371/journal.pone.0152517. eCollection 2016.
2
Accurate Prediction of Contact Numbers for Multi-Spanning Helical Membrane Proteins.
J Chem Inf Model. 2016 Feb 22;56(2):423-34. doi: 10.1021/acs.jcim.5b00517. Epub 2016 Feb 5.
3
Causes of evolutionary rate variation among protein sites.
Nat Rev Genet. 2016 Feb;17(2):109-21. doi: 10.1038/nrg.2015.18. Epub 2016 Jan 19.
4
BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints.
Proteins. 2015 Nov;83(11):1947-62. doi: 10.1002/prot.24801. Epub 2015 Sep 28.
5
De novo structure prediction of globular proteins aided by sequence variation-derived contacts.
PLoS One. 2014 Mar 17;9(3):e92197. doi: 10.1371/journal.pone.0092197. eCollection 2014.
6
BCL::Fold--protein topology determination from limited NMR restraints.
Proteins. 2014 Apr;82(4):587-95. doi: 10.1002/prot.24427. Epub 2013 Oct 17.
7
BCL::MP-fold: folding membrane proteins through assembly of transmembrane helices.
Structure. 2013 Jul 2;21(7):1107-17. doi: 10.1016/j.str.2013.04.022. Epub 2013 May 30.
9
BCL::Fold--de novo prediction of complex and large protein topologies by assembly of secondary structure elements.
PLoS One. 2012;7(11):e49240. doi: 10.1371/journal.pone.0049240. Epub 2012 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验