Suppr超能文献

InterPred:一种用于识别和模拟蛋白质-蛋白质相互作用的流程。

InterPred: A pipeline to identify and model protein-protein interactions.

作者信息

Mirabello Claudio, Wallner Björn

机构信息

Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, 581 83, Sweden.

出版信息

Proteins. 2017 Jun;85(6):1159-1170. doi: 10.1002/prot.25280. Epub 2017 Mar 21.

Abstract

Protein-protein interactions (PPI) are crucial for protein function. There exist many techniques to identify PPIs experimentally, but to determine the interactions in molecular detail is still difficult and very time-consuming. The fact that the number of PPIs is vastly larger than the number of individual proteins makes it practically impossible to characterize all interactions experimentally. Computational approaches that can bridge this gap and predict PPIs and model the interactions in molecular detail are greatly needed. Here we present InterPred, a fully automated pipeline that predicts and model PPIs from sequence using structural modeling combined with massive structural comparisons and molecular docking. A key component of the method is the use of a novel random forest classifier that integrate several structural features to distinguish correct from incorrect protein-protein interaction models. We show that InterPred represents a major improvement in protein-protein interaction detection with a performance comparable or better than experimental high-throughput techniques. We also show that our full-atom protein-protein complex modeling pipeline performs better than state of the art protein docking methods on a standard benchmark set. In addition, InterPred was also one of the top predictors in the latest CAPRI37 experiment. InterPred source code can be downloaded from http://wallnerlab.org/InterPred Proteins 2017; 85:1159-1170. © 2017 Wiley Periodicals, Inc.

摘要

蛋白质-蛋白质相互作用(PPI)对于蛋白质功能至关重要。存在许多通过实验鉴定PPI的技术,但要在分子细节上确定相互作用仍然困难且非常耗时。PPI的数量远远多于单个蛋白质的数量,这使得通过实验表征所有相互作用几乎不可能。因此,迫切需要能够弥合这一差距、预测PPI并在分子细节上对相互作用进行建模的计算方法。在此,我们展示了InterPred,这是一种完全自动化的流程,它利用结构建模结合大规模结构比较和分子对接,从序列预测和建模PPI。该方法的一个关键组成部分是使用一种新型随机森林分类器,它整合了多种结构特征以区分正确和错误的蛋白质-蛋白质相互作用模型。我们表明,InterPred在蛋白质-蛋白质相互作用检测方面有重大改进,其性能与实验高通量技术相当或更好。我们还表明,在标准基准数据集上,我们的全原子蛋白质-蛋白质复合物建模流程比现有最先进的蛋白质对接方法表现更好。此外,InterPred也是最新CAPRI37实验中的顶级预测工具之一。InterPred源代码可从http://wallnerlab.org/InterPred下载 蛋白质2017;85:1159 - 1170。©2017威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验