Suppr超能文献

利用遥远的蛋白质复合物作为结构模板来预测蛋白质-肽相互作用位点。

Predicting protein-peptide interaction sites using distant protein complexes as structural templates.

机构信息

Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden.

出版信息

Sci Rep. 2019 Mar 12;9(1):4267. doi: 10.1038/s41598-019-38498-7.

Abstract

Protein-peptide interactions play an important role in major cellular processes, and are associated with several human diseases. To understand and potentially regulate these cellular function and diseases it is important to know the molecular details of the interactions. However, because of peptide flexibility and the transient nature of protein-peptide interactions, peptides are difficult to study experimentally. Thus, computational methods for predicting structural information about protein-peptide interactions are needed. Here we present InterPep, a pipeline for predicting protein-peptide interaction sites. It is a novel pipeline that, given a protein structure and a peptide sequence, utilizes structural template matches, sequence information, random forest machine learning, and hierarchical clustering to predict what region of the protein structure the peptide is most likely to bind. When tested on its ability to predict binding sites, InterPep successfully pinpointed 255 of 502 (50.7%) binding sites in experimentally determined structures at rank 1 and 348 of 502 (69.3%) among the top five predictions using only structures with no significant sequence similarity as templates. InterPep is a powerful tool for identifying peptide-binding sites; with a precision of 80% at a recall of 20% it should be an excellent starting point for docking protocols or experiments investigating peptide interactions. The source code for InterPred is available at http://wallnerlab.org/InterPep/ .

摘要

蛋白质-肽相互作用在主要的细胞过程中起着重要作用,并且与几种人类疾病有关。为了理解和潜在地调节这些细胞功能和疾病,了解相互作用的分子细节是很重要的。然而,由于肽的灵活性和蛋白质-肽相互作用的瞬时性质,肽很难在实验中研究。因此,需要计算方法来预测蛋白质-肽相互作用的结构信息。

这里我们提出了 InterPep,这是一种用于预测蛋白质-肽相互作用位点的管道。它是一种新颖的管道,给定一个蛋白质结构和一个肽序列,利用结构模板匹配、序列信息、随机森林机器学习和层次聚类来预测肽最有可能结合的蛋白质结构区域。在测试其预测结合位点的能力时,InterPep 在实验确定的结构中成功地在排名第一的位置上准确地预测了 502 个结合位点中的 255 个(50.7%),在使用没有显著序列相似性的结构作为模板的前五个预测中,有 348 个(69.3%)。

InterPep 是一种识别肽结合位点的强大工具;在召回率为 20%的情况下,精度为 80%,它应该是对接协议或研究肽相互作用的实验的一个极好的起点。InterPep 的源代码可在 http://wallnerlab.org/InterPep/ 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbab/6414505/8d07000b5a88/41598_2019_38498_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验