Suppr超能文献

通过密度泛函理论计算结合原位透射电镜和红外光谱对 CO 诱导 Pt 纳米粒子在饱和覆盖度下表面重构的定量和原子尺度研究

Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR.

机构信息

Department of Chemical and Environmental Engineering, ⊥Program in Materials Science and Engineering, and #UCR Center for Catalysis, University of California Riverside , Riverside, California 92521, United States.

Department of Chemical Engineering and Materials Science and ∥Department of Physics and Astronomy, University of California Irvine , Irvine, California 92697, United States.

出版信息

J Am Chem Soc. 2017 Mar 29;139(12):4551-4558. doi: 10.1021/jacs.7b01081. Epub 2017 Mar 20.

Abstract

Atomic-scale insights into how supported metal nanoparticles catalyze chemical reactions are critical for the optimization of chemical conversion processes. It is well-known that different geometric configurations of surface atoms on supported metal nanoparticles have different catalytic reactivity and that the adsorption of reactive species can cause reconstruction of metal surfaces. Thus, characterizing metallic surface structures under reaction conditions at atomic scale is critical for understanding reactivity. Elucidation of such insights on high surface area oxide supported metal nanoparticles has been limited by less than atomic resolution typically achieved by environmental transmission electron microscopy (TEM) when operated under realistic conditions and a lack of correlated experimental measurements providing quantitative information about the distribution of exposed surface atoms under relevant reaction conditions. We overcome these limitations by correlating density functional theory predictions of adsorbate-induced surface reconstruction visually with atom-resolved imaging by in situ TEM and quantitatively with sample-averaged measurements of surface atom configurations by in situ infrared spectroscopy all at identical saturation adsorbate coverage. This is demonstrated for platinum (Pt) nanoparticle surface reconstruction induced by CO adsorption at saturation coverage and elevated (>400 K) temperature, which is relevant for the CO oxidation reaction under cold-start conditions in the catalytic convertor. Through our correlated approach, it is observed that the truncated octahedron shape adopted by bare Pt nanoparticles undergoes a reversible, facet selective reconstruction due to saturation CO coverage, where {100} facets roughen into vicinal stepped high Miller index facets, while {111} facets remain intact.

摘要

在原子尺度上深入了解负载金属纳米粒子如何催化化学反应对于优化化学转化过程至关重要。众所周知,负载金属纳米粒子表面原子的不同几何构型具有不同的催化活性,而且反应性物种的吸附会导致金属表面的重构。因此,在反应条件下对金属表面结构进行原子尺度的表征对于理解反应性至关重要。在高表面积氧化物负载的金属纳米粒子上阐明这些见解受到以下因素的限制:当在实际条件下操作时,环境透射电子显微镜(TEM)通常只能达到小于原子分辨率,并且缺乏相关的实验测量来提供关于在相关反应条件下暴露表面原子分布的定量信息。通过将吸附诱导的表面重构的密度泛函理论预测与原位 TEM 的原子分辨成像进行直观相关,以及通过原位红外光谱对表面原子构型的样品平均测量进行定量相关,我们克服了这些限制,所有这些都在相同的饱和吸附物覆盖度下进行。这对于在催化转化器中冷启动条件下的 CO 氧化反应中具有重要意义的 CO 吸附在饱和覆盖度和升高(>400 K)温度下诱导的铂(Pt)纳米粒子表面重构进行了证明。通过我们的相关方法,观察到裸露的 Pt 纳米粒子采用的截断八面体形状由于饱和 CO 覆盖而经历了可逆的、面选择性重构,其中{100}面变得粗糙,形成相邻的高米勒指数台阶面,而{111}面保持完整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验