Suppr超能文献

化学反应中单原子动力学。

Single Atom Dynamics in Chemical Reactions.

出版信息

Acc Chem Res. 2020 Feb 18;53(2):390-399. doi: 10.1021/acs.accounts.9b00500. Epub 2020 Feb 5.

Abstract

Many heterogeneous chemical reactions involve gases catalyzed over solid surfaces at elevated temperatures and play a critical role in the production of energy, healthcare, pollution control, industrial products, and food. These catalytic reactions take place at the atomic level, with active structures forming under reaction conditions. A fundamental understanding of catalysis at the single atom resolution is therefore a major advance in a rational framework upon which future catalytic processes can be built. Visualization and analysis of gas-catalyst chemical reactions at the atomic level under controlled reaction conditions are key to understanding the catalyst structural evolution and atomic scale reaction mechanisms crucial to the performance and the development of improved catalysts and chemical processes. Increasingly, dynamic single atoms and atom clusters are believed to lead to enhanced catalyst performance, but despite considerable efforts, reaction mechanisms at the single atom level under reaction conditions of gas and temperature are not well understood. The development of the atomic lattice resolution environmental transmission electron microscope (ETEM) by the authors is widely used to visualize gas-solid catalyst reactions at this atomic level. It has recently been advanced to the environmental scanning TEM (ESTEM) with single atom resolution and full analytical capabilities. The ESTEM employs high-angle annular dark-field imaging where intensity is approximately proportional to the square of the atomic number (). In this Account, we highlight the ESTEM development also introduced by the authors for real time in situ studies to reliably discern metal atoms on lighter supports in gas and high temperature environments, evolving oxide/metal interfaces, and atomic level reaction mechanisms in heterogeneous catalysts more generally and informatively, with utilizing the wider body of literature. The highlights include platinum/carbon systems of interest in fuel cells to meet energy demands and reduce environmental pollution, in reduction/oxidation (redox) mechanisms of copper and nickel nanoparticles extensively employed in catalysis, electronics, and sensors, and in the activation of supported cobalt catalysts in Fischer-Tropsch (FT) synthesis to produce fuels. By following the dynamic reduction process at operating temperature, we investigate Pt atom migrations from irregular nanoparticles in a carbon supported platinum catalyst and the resulting faceting. We outline the factors that govern the mechanism involved, with the discovery of single atom interactions which indicate that a primary role of the nanoparticles is to act as reservoirs of low coordination atoms and clusters. This has important implications in supported nanoparticle catalysis and nanoparticle science. In copper and nickel systems, we track the oxidation front at the atomic level as it proceeds across a nanoparticle, by directly monitoring -contrast changes with time and temperature. Regeneration of deactivated catalysts is key to prolong catalyst life. We discuss and review analyses of dynamic redox cycles for the redispersion of nickel nanoparticles with single atom resolution. In the FT process, pretreatment of practical cobalt/silica catalysts reveals higher low-coordination Co active sites for CO adsorption. Collectively, the ESTEM findings generate structural insights into catalyst dynamics important in the development of efficient catalysts and processes.

摘要

许多异构化学反应涉及在高温下在固体表面上催化的气体,并且在能源生产、医疗保健、污染控制、工业产品和食品中起着关键作用。这些催化反应在原子水平上发生,在反应条件下形成活性结构。因此,在合理的框架内对单原子分辨率的催化作用有一个基本的理解,是未来催化过程构建的一个重大进展。在受控反应条件下,对气体-催化剂化学反应进行原子水平的可视化和分析是理解催化剂结构演化和原子级反应机制的关键,这些机制对于性能和改进催化剂和化学过程的发展至关重要。越来越多的人认为,动态单原子和原子簇会导致催化剂性能的提高,但尽管付出了相当大的努力,在气体和温度的反应条件下,单原子水平的反应机制仍未得到很好的理解。作者开发的原子晶格分辨率环境透射电子显微镜(ETEM)被广泛用于在原子水平上可视化气体-固催化剂反应。它最近已经发展到具有单原子分辨率和全分析能力的环境扫描 TEM(ESTEM)。ESTEM 采用高角度环形暗场成像,其强度与原子序数的平方大致成正比(Z2)。在本综述中,我们重点介绍了作者还为实时原位研究开发的 ESTEM,以可靠地辨别气体和高温环境中较轻载体上的金属原子、演化的氧化物/金属界面以及更普遍、更有信息量的多相催化剂中的原子级反应机制,并利用更广泛的文献。其中的亮点包括在满足能源需求和减少环境污染的燃料电池中对铂/碳系统的关注、在广泛应用于催化、电子和传感器的铜和镍纳米粒子的还原/氧化(redox)机制中、以及在费托(FT)合成中支持钴催化剂的活化以生产燃料。通过跟踪操作温度下的动态还原过程,我们研究了在碳负载的铂催化剂中不规则纳米粒子中 Pt 原子的迁移以及由此产生的成核。我们概述了控制相关机制的因素,发现了单原子相互作用,表明纳米粒子的主要作用是充当低配位原子和团簇的储库。这在负载型纳米粒子催化和纳米粒子科学中有重要意义。在铜和镍系统中,我们通过直接监测时间和温度的变化来跟踪氧化前沿在纳米粒子上的进展,以监测原子水平上的对比度变化。失活催化剂的再生是延长催化剂寿命的关键。我们讨论并综述了单原子分辨率下镍纳米粒子动态氧化还原循环的分散分析。在 FT 过程中,对实际的钴/二氧化硅催化剂进行预处理,揭示了 CO 吸附的低配位 Co 活性位较高。总之,ESTEM 的研究结果为催化剂动力学提供了结构见解,这对于开发高效催化剂和工艺非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bae9/7307879/aaf706da4001/ar9b00500_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验