Suppr超能文献

使用静电嵌入共轭帽法广义分子分馏对RNA能量进行全量子力学计算。

Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.

作者信息

Jin Xinsheng, Zhang John Z H, He Xiao

机构信息

School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.

NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.

出版信息

J Phys Chem A. 2017 Mar 30;121(12):2503-2514. doi: 10.1021/acs.jpca.7b00859. Epub 2017 Mar 16.

Abstract

In this study, the electrostatically embedded generalized molecular fractionation with conjugate caps (concaps) method (EE-GMFCC) was employed for efficient linear-scaling quantum mechanical (QM) calculation of total energies of RNAs. In the EE-GMFCC approach, the total energy of RNA is calculated by taking a proper combination of the QM energy of each nucleotide-centric fragment with large caps or small caps (termed EE-GMFCC-LC and EE-GMFCC-SC, respectively) deducted by the energies of concaps. The two-body QM interaction energy between non-neighboring ribonucleotides which are spatially in close contact are also taken into account for the energy calculation. Numerical studies were carried out to calculate the total energies of a number of RNAs using the EE-GMFCC-LC and EE-GMFCC-SC methods at levels of the Hartree-Fock (HF) method, density functional theory (DFT), and second-order many-body perturbation theory (MP2), respectively. The results show that the efficiency of the EE-GMFCC-SC method is about 3 times faster than the EE-GMFCC-LC method with minimal accuracy sacrifice. The EE-GMFCC-SC method is also applied for relative energy calculations of 20 different conformers of two RNA systems using HF and DFT, respectively. Both single-point and relative energy calculations demonstrate that the EE-GMFCC method has deviations from the full system results of only a few kcal/mol.

摘要

在本研究中,采用静电嵌入共轭帽广义分子片段化方法(EE-GMFCC)对RNA的总能量进行高效的线性标度量子力学(QM)计算。在EE-GMFCC方法中,RNA的总能量通过将每个以核苷酸为中心的带有大帽或小帽的片段(分别称为EE-GMFCC-LC和EE-GMFCC-SC)的QM能量进行适当组合,并减去共轭帽的能量来计算。在能量计算中还考虑了空间上紧密接触的非相邻核糖核苷酸之间的两体QM相互作用能。分别在Hartree-Fock(HF)方法、密度泛函理论(DFT)和二阶多体微扰理论(MP2)水平上,使用EE-GMFCC-LC和EE-GMFCC-SC方法对多个RNA的总能量进行了数值研究。结果表明,EE-GMFCC-SC方法的效率比EE-GMFCC-LC方法快约3倍,且精度损失最小。EE-GMFCC-SC方法还分别用于两个RNA系统的20种不同构象的相对能量计算,采用HF和DFT方法。单点能量计算和相对能量计算均表明,EE-GMFCC方法与全系统结果的偏差仅为几千卡/摩尔。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验