全球磷酸化蛋白质组图谱的机器学习有助于区分直接与间接激酶底物。

Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates.

作者信息

Kanshin Evgeny, Giguère Sébastien, Jing Cheng, Tyers Mike, Thibault Pierre

机构信息

From the ‡Institute for Research in Immunology and Cancer.

From the ‡Institute for Research in Immunology and Cancer,

出版信息

Mol Cell Proteomics. 2017 May;16(5):786-798. doi: 10.1074/mcp.M116.066233. Epub 2017 Mar 6.

Abstract

Mass spectrometry allows quantification of tens of thousands of phosphorylation sites from minute amounts of cellular material. Despite this wealth of information, our understanding of phosphorylation-based signaling is limited, in part because it is not possible to deconvolute substrate phosphorylation that is directly mediated by a particular kinase phosphorylation that is mediated by downstream kinases. Here, we describe a framework for assignment of direct kinase substrates using a combination of selective chemical inhibition, quantitative phosphoproteomics, and machine learning techniques. Our workflow allows classification of phosphorylation events following inhibition of an analog-sensitive kinase into kinase-independent effects of the inhibitor, direct effects on cognate substrates, and indirect effects mediated by downstream kinases or phosphatases. We applied this method to identify many direct targets of Cdc28 and Snf1 kinases in the budding yeast Global phosphoproteome analysis of acute time-series demonstrated that dephosphorylation of direct kinase substrates occurs more rapidly compared with indirect substrates, both after inhibitor treatment and under a physiological nutrient shift in cells. Mutagenesis experiments revealed a high proportion of functionally relevant phosphorylation sites on Snf1 targets. For example, Snf1 itself was inhibited through autophosphorylation on Ser and new phosphosites were discovered that modulate the activity of the Reg1 regulatory subunit of the Glc7 phosphatase and the Gal83 β-subunit of SNF1 complex. This methodology applies to any kinase for which a functional analog sensitive version can be constructed to facilitate the dissection of the global phosphorylation network.

摘要

质谱分析法能够从微量细胞材料中对成千上万的磷酸化位点进行定量分析。尽管有如此丰富的信息,但我们对基于磷酸化的信号传导的理解仍然有限,部分原因是无法区分由特定激酶直接介导的底物磷酸化与由下游激酶介导的磷酸化。在这里,我们描述了一个使用选择性化学抑制、定量磷酸蛋白质组学和机器学习技术相结合的直接激酶底物分配框架。我们的工作流程允许在抑制模拟敏感激酶后,将磷酸化事件分类为抑制剂的激酶非依赖性效应、对同源底物的直接效应以及由下游激酶或磷酸酶介导的间接效应。我们应用这种方法在芽殖酵母中鉴定了Cdc28和Snf1激酶的许多直接靶点。对急性时间序列的全局磷酸蛋白质组分析表明,无论是在抑制剂处理后还是在细胞生理营养转移的情况下,直接激酶底物的去磷酸化都比间接底物发生得更快。诱变实验揭示了Snf1靶点上高比例的功能相关磷酸化位点。例如,Snf1自身通过Ser位点的自磷酸化被抑制,并且发现了新的磷酸化位点,这些位点调节Glc7磷酸酶的Reg1调节亚基和SNF1复合物的Gal83β亚基的活性。这种方法适用于任何可以构建功能模拟敏感版本以促进对全局磷酸化网络进行剖析的激酶。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索