Suppr超能文献

通过快速的患者特异性建模改善先天性心脏病的评估。

Improving assessment of congenital heart disease through rapid patient specific modeling.

作者信息

Gilbert Kathleen, Farrar Genevieve, Cowan Brett, Suinesiaputra Avan, Occleshaw Christopher, Pontre Beau, Perry James, Hegde Sanjeet, Omens Jeffrey, McCulloch Andrew, Young Alistair

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1228-1231. doi: 10.1109/EMBC.2016.7590927.

Abstract

Congenital heart disease is the most common birth defect, with an incidence of 75 in every 1000 births. As a result of improved interventions, 90% of people with congenital heart disease now survive to adulthood. They must undergo regular imaging to assess their biventricular (left and right ventricular) function. Analysis of the images is problematic due to the large variety of shapes and complex geometry. In this paper we extend a biventricular modeling method to improve the analysis of MR images from congenital heart disease patients. We used a subdivision surface method to create three customizable exemplars, representing common manifestations of anatomy, and incorporated these as priors into an interactive biventricular customization procedure. The CHD-specific priors were tested on 60 cases representing a variety of congenital heart diseases for which the gold standard manual contours were available. The introduction of multiple priors showed a significant decrease in analysis time while maintaining good correlation between the two methods (R2 >.82).

摘要

先天性心脏病是最常见的出生缺陷,每1000例出生中就有75例发病。由于干预措施的改进,现在90%的先天性心脏病患者能够存活至成年。他们必须定期进行成像检查,以评估其双心室(左心室和右心室)功能。由于形状种类繁多且几何形状复杂,图像分析存在问题。在本文中,我们扩展了一种双心室建模方法,以改进对先天性心脏病患者磁共振图像的分析。我们使用细分曲面方法创建了三个可定制的范例,代表解剖结构的常见表现,并将这些范例作为先验知识纳入交互式双心室定制程序中。针对60例代表各种先天性心脏病的病例测试了特定于先天性心脏病的先验知识,这些病例有金标准的手动轮廓可用。引入多个先验知识显示分析时间显著减少,同时两种方法之间保持良好的相关性(R2>.82)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验