Suppr超能文献

重症监护病房中用于结局预测的高级分析方法。

Advanced analytics for outcome prediction in intensive care units.

作者信息

Jalali Ali, Bender Dieter, Rehman Mohamed, Nadkanri Vinay, Nataraj C

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2520-2524. doi: 10.1109/EMBC.2016.7591243.

Abstract

In this paper we present a new expert knowledge based clinical decision support system for prediction of intensive care units outcome based on the physiological measurements collected during the first 48 hours of the patient's admission to the ICU. The developed CDSS algorithm is composed of several stages. First, we categorize the collected data based on the physiological organ that they represent. We then extract clinically relevant features from each data category and then rank these features based on their mutual information with the outcome. Then, we design an artificial neural network to serve as a classifier to detect patients at high risk of critical deterioration. We use the eight-fold cross validation method to test the developed CDSS classifier. The results from the classification show that the newly designed CDSS outperforms the widely used acuity scoring systems, SOFA and SAPS-III. The F-score classification result of our developed algorithms is 42% while the F-score results for SOFA and SAPS-III are 26% and 29% respectively.

摘要

在本文中,我们提出了一种基于专家知识的新型临床决策支持系统,用于根据患者入住重症监护病房(ICU)的头48小时内收集的生理测量数据预测ICU的治疗结果。所开发的临床决策支持系统(CDSS)算法由几个阶段组成。首先,我们根据收集到的数据所代表的生理器官对其进行分类。然后,我们从每个数据类别中提取临床相关特征,并根据这些特征与治疗结果的互信息对其进行排序。接着,我们设计一个人工神经网络作为分类器,以检测有严重病情恶化高风险的患者。我们使用八折交叉验证方法来测试所开发的CDSS分类器。分类结果表明,新设计的CDSS优于广泛使用的急性生理学评分系统,即序贯器官衰竭评估(SOFA)和简化急性生理学评分系统III(SAPS-III)。我们所开发算法的F值分类结果为42%,而SOFA和SAPS-III的F值结果分别为26%和29%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验