Suppr超能文献

临床医生参与基于机器学习的预测性临床决策支持在医院环境中的研究:范围综述。

Clinician involvement in research on machine learning-based predictive clinical decision support for the hospital setting: A scoping review.

机构信息

School of Nursing, Columbia University, New York, New York, USA.

Department of Biomedical Informatics, Columbia University, New York, New York, USA.

出版信息

J Am Med Inform Assoc. 2021 Mar 1;28(3):653-663. doi: 10.1093/jamia/ocaa296.

Abstract

OBJECTIVE

The study sought to describe the prevalence and nature of clinical expert involvement in the development, evaluation, and implementation of clinical decision support systems (CDSSs) that utilize machine learning to analyze electronic health record data to assist nurses and physicians in prognostic and treatment decision making (ie, predictive CDSSs) in the hospital.

MATERIALS AND METHODS

A systematic search of PubMed, CINAHL, and IEEE Xplore and hand-searching of relevant conference proceedings were conducted to identify eligible articles. Empirical studies of predictive CDSSs using electronic health record data for nurses or physicians in the hospital setting published in the last 5 years in peer-reviewed journals or conference proceedings were eligible for synthesis. Data from eligible studies regarding clinician involvement, stage in system design, predictive CDSS intention, and target clinician were charted and summarized.

RESULTS

Eighty studies met eligibility criteria. Clinical expert involvement was most prevalent at the beginning and late stages of system design. Most articles (95%) described developing and evaluating machine learning models, 28% of which described involving clinical experts, with nearly half functioning to verify the clinical correctness or relevance of the model (47%).

DISCUSSION

Involvement of clinical experts in predictive CDSS design should be explicitly reported in publications and evaluated for the potential to overcome predictive CDSS adoption challenges.

CONCLUSIONS

If present, clinical expert involvement is most prevalent when predictive CDSS specifications are made or when system implementations are evaluated. However, clinical experts are less prevalent in developmental stages to verify clinical correctness, select model features, preprocess data, or serve as a gold standard.

摘要

目的

本研究旨在描述临床专家在开发、评估和实施利用机器学习分析电子健康记录数据以协助护士和医生进行预后和治疗决策的临床决策支持系统(CDSS)中的参与情况和性质,即预测性 CDSS)在医院中。

材料与方法

对 PubMed、CINAHL 和 IEEE Xplore 进行系统检索,并对手头相关会议论文集进行检索,以确定合格文章。合格的研究为使用电子健康记录数据为医院环境中的护士或医生开发的预测性 CDSS 的实证研究,在同行评议期刊或会议论文集中发表的过去 5 年的研究。对合格研究中关于临床医生参与度、系统设计阶段、预测性 CDSS 意图和目标临床医生的数据进行图表和总结。

结果

80 项研究符合入选标准。临床专家的参与在系统设计的开始和后期阶段最为普遍。大多数文章(95%)描述了开发和评估机器学习模型,其中 28%描述了涉及临床专家,近一半的工作是验证模型的临床正确性或相关性(47%)。

讨论

在出版物中应明确报告预测性 CDSS 设计中临床专家的参与情况,并评估其克服预测性 CDSS 采用挑战的潜力。

结论

如果存在,临床专家的参与在制定预测性 CDSS 规范或评估系统实施时最为普遍。然而,临床专家在验证临床正确性、选择模型特征、预处理数据或作为黄金标准方面的参与度较低。

相似文献

2
A Scoping Review of Integrated Medical Devices and Clinical Decision Support in the Acute Care Setting.
Appl Clin Inform. 2022 Oct;13(5):1223-1236. doi: 10.1055/s-0042-1759513. Epub 2022 Dec 28.
7
Diagnosis of Rare Diseases: a scoping review of clinical decision support systems.
Orphanet J Rare Dis. 2020 Sep 24;15(1):263. doi: 10.1186/s13023-020-01536-z.

引用本文的文献

2
BadCLM: Backdoor Attack in Clinical Language Models for Electronic Health Records.
AMIA Annu Symp Proc. 2025 May 22;2024:768-777. eCollection 2024.
3
Deployable machine learning-based decision support system for tracheostomy in acute burn patients.
Burns Trauma. 2025 May 13;13:tkaf010. doi: 10.1093/burnst/tkaf010. eCollection 2025.
10
Achieving large-scale clinician adoption of AI-enabled decision support.
BMJ Health Care Inform. 2024 May 30;31(1):e100971. doi: 10.1136/bmjhci-2023-100971.

本文引用的文献

1
Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:683-686. doi: 10.1109/bibm.2018.8621574. Epub 2019 Jan 24.
2
Machine learning provides evidence that stroke risk is not linear: The non-linear Framingham stroke risk score.
PLoS One. 2020 May 21;15(5):e0232414. doi: 10.1371/journal.pone.0232414. eCollection 2020.
3
A lesson in implementation: A pre-post study of providers' experience with artificial intelligence-based clinical decision support.
Int J Med Inform. 2020 May;137:104072. doi: 10.1016/j.ijmedinf.2019.104072. Epub 2019 Dec 30.
4
Incorporation of expert knowledge in the statistical detection of diagnosis related group misclassification.
Int J Med Inform. 2020 Apr;136:104086. doi: 10.1016/j.ijmedinf.2020.104086. Epub 2020 Feb 5.
5
The science of informatics and predictive analytics.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1425-1426. doi: 10.1093/jamia/ocz202.
6
Definitions, methods, and applications in interpretable machine learning.
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22071-22080. doi: 10.1073/pnas.1900654116. Epub 2019 Oct 16.
8
Prognostic models will be victims of their own success, unless….
J Am Med Inform Assoc. 2019 Dec 1;26(12):1645-1650. doi: 10.1093/jamia/ocz145.
10
Automated detection of altered mental status in emergency department clinical notes: a deep learning approach.
BMC Med Inform Decis Mak. 2019 Aug 19;19(1):164. doi: 10.1186/s12911-019-0894-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验