Tataraidze Alexander, Korostovtseva Lyudmila, Anishchenko Lesya, Bochkarev Mikhail, Sviryaev Yurii, Ivashov Sergey
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2839-2842. doi: 10.1109/EMBC.2016.7591321.
This paper presents a method for classifying wakefulness, REM, light and deep sleep based on the analysis of respiratory activity and body motions acquired by a bioradar. The method was validated using data of 32 subjects without sleep-disordered breathing, who underwent a polysomnography study in a sleep laboratory. We achieved Cohen's kappa of 0.49 in the wake-REM-light-deep sleep classification, 0.55 for the wake-REM-NREM classification and 0.57 for the sleep/wakefulness determination. The results might be useful for the development of unobtrusive sleep monitoring systems for diagnostics, prevention, and management of sleep disorders.
本文提出了一种基于对生物雷达采集的呼吸活动和身体运动进行分析来对清醒、快速眼动(REM)、浅睡眠和深睡眠进行分类的方法。该方法使用了32名无睡眠呼吸障碍受试者的数据进行验证,这些受试者在睡眠实验室接受了多导睡眠图研究。在清醒-快速眼动-浅睡眠-深睡眠分类中,我们获得的科恩kappa系数为0.49,在清醒-快速眼动-非快速眼动(NREM)分类中为0.55,在睡眠/清醒判定中为0.57。这些结果可能有助于开发用于睡眠障碍诊断、预防和管理的非侵入性睡眠监测系统。