Suppr超能文献

基于生物放射定位的睡眠阶段分类

Bioradiolocation-based sleep stage classification.

作者信息

Tataraidze Alexander, Korostovtseva Lyudmila, Anishchenko Lesya, Bochkarev Mikhail, Sviryaev Yurii, Ivashov Sergey

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2839-2842. doi: 10.1109/EMBC.2016.7591321.

Abstract

This paper presents a method for classifying wakefulness, REM, light and deep sleep based on the analysis of respiratory activity and body motions acquired by a bioradar. The method was validated using data of 32 subjects without sleep-disordered breathing, who underwent a polysomnography study in a sleep laboratory. We achieved Cohen's kappa of 0.49 in the wake-REM-light-deep sleep classification, 0.55 for the wake-REM-NREM classification and 0.57 for the sleep/wakefulness determination. The results might be useful for the development of unobtrusive sleep monitoring systems for diagnostics, prevention, and management of sleep disorders.

摘要

本文提出了一种基于对生物雷达采集的呼吸活动和身体运动进行分析来对清醒、快速眼动(REM)、浅睡眠和深睡眠进行分类的方法。该方法使用了32名无睡眠呼吸障碍受试者的数据进行验证,这些受试者在睡眠实验室接受了多导睡眠图研究。在清醒-快速眼动-浅睡眠-深睡眠分类中,我们获得的科恩kappa系数为0.49,在清醒-快速眼动-非快速眼动(NREM)分类中为0.55,在睡眠/清醒判定中为0.57。这些结果可能有助于开发用于睡眠障碍诊断、预防和管理的非侵入性睡眠监测系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验