Ibrahim Ahmed, Kiani Mehdi
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4800-4803. doi: 10.1109/EMBC.2016.7591801.
The operation frequency (f) has been a key parameter in optimizing wireless power transmission links for biomedical implants with millimeter (mm) dimensions. This paper studies the feasibility of using printed spiral coils (PSCs) for powering mm-sized implants with high power transmission efficiency (PTE) at different fps. Compared to wire-wound coils (WWCs), using a PSC in the implant side allows batch fabrication on rigid or flexible substrates, which can also be used as a platform for integrating implant components. For powering an implant with 1 mm diameter, located 10 mm inside the tissue, the geometries of transmitter (Tx) and receiver (Rx) PSCs were optimized at different fPs of 50 MHz, 200 MHz, and 500 MHz using a commercial field solver (HFSS). In simulations, PSC- and WWC-based links achieved maximum PTE of 0.13% and 3.3%, and delivered power of 65.7 μW and 720 μW under specific absorption rate (SAR) constraints at the optimal fp of 50 MHz and 100 MHz, respectively, suggesting that the performance of the PSC-based link is significantly inferior to that of the WWC-based link.
对于毫米尺寸的生物医学植入物,操作频率(f)一直是优化无线电力传输链路的关键参数。本文研究了使用印刷螺旋线圈(PSC)在不同频率下为毫米尺寸植入物提供高功率传输效率(PTE)的可行性。与绕线线圈(WWC)相比,在植入物一侧使用PSC可在刚性或柔性基板上进行批量制造,该基板也可用作集成植入物组件的平台。对于为位于组织内部10毫米处的直径为1毫米的植入物供电,使用商业场求解器(HFSS)在50 MHz、200 MHz和500 MHz的不同频率下对发射器(Tx)和接收器(Rx)PSC的几何形状进行了优化。在模拟中,基于PSC和WWC的链路分别在50 MHz和100 MHz的最佳频率下,在比吸收率(SAR)约束下实现了0.13%和3.3%的最大PTE,并分别提供了65.7 μW和720 μW的功率,这表明基于PSC的链路性能明显低于基于WWC的链路。