Meng Miao, Kiani Mehdi
IEEE Trans Biomed Circuits Syst. 2017 Feb;11(1):98-107. doi: 10.1109/TBCAS.2016.2583783. Epub 2016 Sep 20.
Ultrasound has been recently proposed as an alternative modality for efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. This paper presents the theory and design methodology of ultrasonic WPT links that involve mm-sized receivers (Rx). For given load (R) and powering distance (d), the optimal geometries of transmitter (Tx) and Rx ultrasonic transducers, including their diameter and thickness, as well as the optimal operation frequency (f) are found through a recursive design procedure to maximize the power transmission efficiency (PTE). First, a range of realistic fs is found based on the Rx thickness constrain. For a chosen f within the range, the diameter and thickness of the Rx transducer are then swept together to maximize PTE. Then, the diameter and thickness of the Tx transducer are optimized to maximize PTE. Finally, this procedure is repeated for different fs to find the optimal f and its corresponding transducer geometries that maximize PTE. A design example of ultrasonic link has been presented and optimized for WPT to a 1 mm implant, including a disk-shaped piezoelectric transducer on a silicon die. In simulations, a PTE of 2.11% at f of 1.8 MHz was achieved for R of 2.5 [Formula: see text] at [Formula: see text]. In order to validate our simulations, an ultrasonic link was optimized for a 1 mm piezoelectric transducer mounted on a printed circuit board (PCB), which led to simulated and measured PTEs of 0.65% and 0.66% at f of 1.1 MHz for R of 2.5 [Formula: see text] at [Formula: see text], respectively.
最近,超声波被提议作为一种向毫米尺寸的生物医学植入物进行高效无线电力传输(WPT)的替代方式。本文介绍了涉及毫米尺寸接收器(Rx)的超声WPT链路的理论和设计方法。对于给定的负载(R)和供电距离(d),通过递归设计程序找到发射器(Tx)和Rx超声换能器的最佳几何形状,包括它们的直径和厚度,以及最佳工作频率(f),以最大化功率传输效率(PTE)。首先,根据Rx厚度约束找到一系列实际的f。对于该范围内选择的f,然后同时扫描Rx换能器的直径和厚度以最大化PTE。然后,优化Tx换能器的直径和厚度以最大化PTE。最后,对不同的f重复此过程,以找到使PTE最大化的最佳f及其相应的换能器几何形状。给出了一个用于向1毫米植入物进行WPT的超声链路设计示例并进行了优化,包括硅芯片上的盘形压电换能器。在模拟中,对于在[公式:见原文]处R为2.5[公式:见原文]的情况,在1.8 MHz的f下实现了2.11%的PTE。为了验证我们的模拟,针对安装在印刷电路板(PCB)上的1毫米压电换能器优化了超声链路,对于在[公式:见原文]处R为2.5[公式:见原文]的情况,在1.1 MHz的f下分别导致模拟和测量的PTE为0.65%和0.66%。