Suppr超能文献

Characterization of the alpha +-like Na+,K+-ATPase which mediates ouabain inhibition of adrenergic induction of N-acetyltransferase (EC 2.3.1.87) activity: studies with isolated pinealocytes.

作者信息

González-García C, Ceña V, Klein D C

机构信息

Experimental Therapeutics Section, National Heart Lung and Blood Institute, Bethesda, Maryland 20892.

出版信息

Mol Pharmacol. 1987 Dec;32(6):792-7.

PMID:2826993
Abstract

Ouabain inhibits (IC50 congruent to 200 nM) the congruent to 100-fold adrenergic cyclic AMP stimulation of rat pineal arylalkylamine N-acetyltransferase (EC 2.3.1.87, serotonin N-acetyltransferase, NAT) activity in intact pineal glands. In the present study, ouabain binding sites in pineal membranes were characterized in detail and compared to sites in isolated pinealocytes, which mediate the inhibition of Na+,K+-ATPase, as indicated by 86Rb uptake and norepinephrine (NE) stimulation of NAT activity. High affinity ouabain-binding sites were identified in crude preparations of pineal membranes (Kd congruent to 14 nM; Bmax congruent to 4 pmol/mg of protein) and similar sites were also found in ovine and bovine pineal tissue. The ouabain Kd value for the rat pineal binding sites was similar to the estimated ouabain IC50 values for 86Rb uptake and the NE stimulation of NAT activity in intact rat pinealocytes. In addition, the relative orders of potency of four cardiac glycosides in displacing [3H]ouabain from high affinity binding sites and inhibiting both 86Rb uptake and NE stimulation of NAT activity were the same (acetyldigitoxin greater than ouabain greater than digitoxin greater than strophanthidin). The similarities in the characteristics of the high affinity [3H]ouabain-binding sites and the sites involved in the inhibition of 86Rb uptake and stimulation of NAT activity indicate that an alpha +-like Na+,K+-ATPase mediates the inhibitory effects of ouabain on the adrenergic induction of pineal NAT activity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验